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Metabolomics is the study of small molecules in a biologi-
cal system that participates in the metabolic reactions re-
sponsible for cell growth, survival, and other normal cellular 
functions [1-3]. Additionally, the metabolome responds to 
transcriptional and translational alterations associated with 
genotypical, epigenetic, or environmental perturbations [4-
7]. Thus, metabolomics provides an assessment of global 
perturbations with respect to an altered genome, proteome, 
or environment [2, 8, 9]. The simultaneous integration of 

genomic, transcriptomic and proteomic data has enabled an 
in-depth analysis of the interplay, interaction, and regulation 
of DNA, RNA and proteins [10-12]. Along this line, 
monitoring the bacterial metabolome and integrating the 
results with other “omics” data has provided valuable 
insights into bacterial adaptability [13], biofilms [14], 
evolution [15], pathogenesis [16], and drug resistance [17].  

Depending on the organism and growth state, the total 
number of metabolites within a cell varies between several 
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Abstract 

1. Introduction 

Over the past decade, metabolomics has emerged as an important technique for systems biology. Measuring all the metabolites in a biological 
system provides an invaluable source of information to explore various cellular processes, and to investigate the impact of environmental 
factors and genetic modifications. Nuclear magnetic resonance (NMR) spectroscopy is an important method routinely employed in metabo-
lomics. NMR provides comprehensive structural and quantitative information useful for metabolomics fingerprinting, chemometric analysis, 
metabolite identification and metabolic pathway construction. A successful metabolomics study relies on proper experimental protocols for 
the collection, handling, processing and analysis of metabolomics data. Critically, these protocols should eliminate or avoid biologically-
irrelevant changes to the metabolome. We provide a comprehensive description of our NMR-based metabolomics procedures optimized for 
the analysis of bacterial metabolomes. The technical details described within this manuscript should provide a useful guide to reliably apply 
our NMR-based metabolomics methodology to systems biology studies.  
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hundred to a few thousand, with a corresponding diversity 
in physical and chemical properties, such as size, stability, 
and concentration [18]. In addition to the challenge of the 
simultaneous study of all the metabolites within a given 
biological system [19], the selection of an analytical 
technique will influence which metabolites are observed. 
NMR and MS are commonly employed for metabolomics, 
where both instruments can be interfaced with LC, GC, and 
CE systems to select and emphasize specific components of 
the metabolome [20-24]. NMR has a number of advantages 
in analyzing the metabolome that includes minimal sample 
handling and that it is not reliant on chromatography to 
purify or separate metabolites. In addition, multiple 
resonances from a single molecule increase the accuracy of 
metabolite identification and quantitation. This accuracy can 
be further enhanced by the application of 13C- and 15N-
isotope labeling to enhance specific regions of the 
metabolome [25, 26]. Importantly, the choice of 13C- or 15N-
labeled metabolite determines the region of the metabolome 
observed by NMR, providing significant flexibility in 
experimental design. In contrast to MS, NMR is a relatively 
insensitive technique and only observes the most abundant 
(≥ 1 to 5 μM) metabolites. In addition, MS has the advantage 
of detecting a wider-range of the metabolome. However, 
because of the relatively low molecular-weight range of the 
metabolome, MS methods generally require 
chromatography to separate metabolites before analysis [27]. 
Additionally, variations in ionization and the occurrence of 
ion suppression in a complex mixture add uncertainty in 
detecting specific metabolites by MS [28]. Finally, 
quantitation by MS is typically more challenging than NMR. 
Taken together, NMR and MS each have strengths and 
weaknesses but should be viewed as complementary 
techniques [29].  

NMR-based metabolomics have been used to study a wide 
range of biological systems such as tissues [30], biofluids 
[31], mammalian cell cultures [32], plants [33] and bacteria 
[34-36]. The overall procedure for an NMR-based 
metabolomics study includes the following general steps: cell 
growth and harvesting, metabolite extraction, NMR data 
collection and analysis, multivariate statistical analysis, 
metabolite identification and quantification [37]. Typically, 
one-dimensional (1D) 1H NMR spectra are used for a 
multivariate analysis such as principal component analysis 
(PCA) or orthogonal projection to latent structures 
discriminant analysis (OPLS-DA) [38, 39]. Both PCA and 
OPLS-DA provide global profiles of metabolome changes 
[40, 41]. Two-dimensional (2D) 1H,13C Heteronuclear Single 
Quantum Coherence (HSQC) or 1H,1H TOtal Correlated 
SpectroscopY (TOCSY) NMR experiments are used for the 
quantitative assessment of metabolite changes resulting from 
genetic modification or external stimuli [5, 14]. The ability to 
generate global profiles and quantitative differences coupled 
with the ease of applying NMR-based metabolomics has 
contributed to the rapid growth of the NMR metabolomics 
field. While NMR data acquisition and analysis methods are 

improving, care must be taken to ensure that the methods 
are appropriate to the task at hand and generate biologically 
relevant information. As an example, protocols to efficiently 
extract metabolites without inducing cellular changes are 
essential for success [32, 42]. In brief, the observed changes 
in the metabolome should reflect a change in the state of the 
system instead of how the cells are handled and processed. 
Similarly, variations in instrument performance, choice of 
procedures for data collection and processing, and 
invalidated models from multivariate analysis may induce 
unintended biases or incorrect interpretation of 
metabolomics data [43-46]. 

Since NMR-based metabolomics is a relatively new and 
still developing technology, improving and enhancing the 
experimental protocols is necessary to advance the field and 
ensure continued success. Toward this end, we describe our 
recently developed and optimized protocols for the 
application of NMR metabolomics to microbial samples. We 
present our current methodology and also discuss the 
challenges associated with each major step of the process: (i) 
sample preparation, (ii) NMR data collection and 
processing, (iii) multivariate statistical analysis, (vi) 
metabolite identification and network generation. 
Specifically, the overall methodology will be discussed in 
detail, where a number of key features will also be 
highlighted, such as automation, bioinformatics, 
experimental design, and harvesting the metabolome. The 
focus of our efforts has been to identify and minimize 
procedural steps that negatively influence the outcome of an 
NMR-based metabolomics experiment. 

2. Experimental Design 

A general protocol for the analysis of bacterial metabo-
lomes using NMR is shown in Figure 1. The flow diagram 
illustrates procedures for both a global analysis of metabo-
lome changes (metabolomics fingerprinting); and the identi-
fication and quantitation of specific metabolites correlated 
with the biological process (metabolomics profiling). The 
overall process consists of the following key steps: bacterial 
cultivation and harvesting, metabolite extraction, NMR data 
collection and analysis, multivariate statistical analysis, me-
tabolite identification and quantification. Successful metabo-
lomics sample preparation involves three steps. The first step 
is the simultaneous growth of all of the bacterial cultures or 
as many as is practical at a time. The bacteria are grown in a 
standard medium for fingerprint analysis, whereas the medi-
um is supplemented with a 13C-labeled metabolite for metab-
olomics profiling [47, 48]. After the bacteria are grown for a 
defined time or they have achieved a specified cell density, 
the second sample preparation step involves harvesting the 
bacteria, quenching to halt all enzymatic processes, and 
washing to remove the medium. The third sample prepara-
tion step involves lysing the cells and extracting the metabo-
lome. A variety of solvents are routinely employed depend-
ing on the solubility of the targeted metabolites (cytosolic 
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metabolites, lipids, etc.). The metabolomics samples are then 
used to generate a series of NMR spectra, which are used for 
the multivariate statistical analysis, metabolite identification 
and quantification. The individual steps of the NMR-based 
metabolomics protocol will be discussed in detail highlight-
ing challenges associated with each step.  

2.1 Identify the appropriate biological system for a metabo-
lomics study  

NMR-based metabolomics is an important tool in systems 
biology research. The quantitative and qualitative measure-

ment of metabolites from cytosolic extracts can be extremely 
valuable for investigating cellular processes, pathogenesis, 
and the effects of drugs or the environment on bacteria. Un-
fortunately, the bacterial metabolome is a complex mixture 
of metabolites and numerous interconnected metabolic and 
signaling pathways. This high interconnectivity may result in 
significant metabolite concentration changes far from the 
origin of the perturbation (inhibited, inactivated or down-
regulated protein). Correspondingly, it is easier to observe 
changes to the metabolome than deduce the primary source 
of the perturbation after its impact has rippled throughout 
the metabolome. As an illustration, treating a bacterial cul-

Figure 1. A flow chart of our protocol used for the NMR analysis of bacterial metabolomes.  



Halouska et al., 2013 | Journal of Integrated Omics 

120-137: 123 

ture with a particular drug would be expected to lead to a 
global change in the metabolome, but interpreting these 
changes to identify the therapeutic target is extremely chal-
lenging. To address this challenge, the in vivo mechanism of 
action of a potential drug lead may be determined by com-
paring these metabolome changes to other drugs with 
known biological targets [49] or to a mutant bacteria where a 
specific protein target is ablated or modified by genetic inac-
tivation [50, 51]. This example illustrates that the compara-
tive analysis between two or more metabolomes is an effec-
tive application of metabolomics. In order to obtain reliable 
insights into the physiology of bacteria or any other organ-
ism, it is essential to identify and establish at least two refer-
ence metabolomes (wild-type vs. mutant, drug-resistant vs. 
drug susceptible, nutrient-rich vs. nutrient-limited, etc.) for 
a comparative analysis. Once the reference conditions are 
established, bacteria can be exposed to any range of experi-
mental variables such as a drug treatment, environmental 
stimuli (pH, temperature, nutrient change), or gene knock-
out (mutants, RNAi, inhibitor) to determine if similarities 
exist with the reference metabolome. The similarity between 
metabolomes infers an overlap in the underlying physiologi-
cal processes or responses that gave rise to the metabolome 
changes. We have used this approach to demonstrate the 
similarity of Staphylococcus epidermidis metabolomes re-
sulting from exposure to divergent environmental stressors 
that are known to facilitate biofilm formation [5, 14, 52]. 
Our results suggested that the tricarboxylic acid (TCA) cycle 
acts as a metabolic signaling network to transduce external 
stresses into internal metabolic signals. This conclusion was 
only possible because the experimental design was based on 
comparing the metabolomes of the S. epidermidis wild-type 
strain 1457 and an aconitase mutant strain 1457-acnA::tetM 
with and without the treatment of biofilm stressors. In 
summary, the successful outcome of a metabolomics study 
hinges on the experimental design and the proper choice of 
the cellular metabolomes to be compared. 

2.2 Minimize unintended bias and biologically irrelevant 
variations 

In addition to the proper choice of bacterial strains to 
compare in a metabolomics study, the experimental 
protocols must be optimized to reduce unwanted variation 
or bias in the collection of cell-free lysates. It is essential to 
ensure that any metabolome changes are limited to 
biologically relevant factors and are not caused by the 
handling or processing of the samples. Thus, the key to 
metabolomics is establishing an efficient methodology that 
closely captures the true state of the metabolome [53, 54]. 
Fundamental to a successful metabolomics experiment is 
maximizing the uniformity of the preparation, handling, 
processing, and analysis of each replicate sample [35, 45, 55-
58]. In instances where cultivation and/or processing 
variation is unavoidable (e.g., if multiple incubators are 
required to accommodate all the replicates), then the 

cultures should be randomly distributed between the 
incubators to minimize bias. Ideally, all of the metabolomics 
samples should be handled by the same person because 
subtle differences in individual techniques may influence the 
outcome. If multiple investigators are required to efficiently 
handle the samples, each researcher should be assigned a 
specific set of tasks that are consistently applied to each 
sample. For example, one investigator lyses all the bacterial 
cells while another performs the metabolome extraction 
procedure on every sample. 

2.3 Optimization of the number of replicates to maximize 
statistical significance 

As with sample cultivation and preparation methods, the 
NMR spectra generated from metabolomics samples need to 
accurately represent the state of the system. In other words, 
the NMR spectra must reflect the actual concentrations and 
identity of the metabolites present in the biological sample at 
the time of harvest. If the sample preparation and data 
acquisition represent the metabolic status at the time of 
harvest, then multivariate statistical techniques, such as PCA 
and OPLS-DA, will enhance the identification of similarities 
or differences in the NMR spectra, and, correspondingly, 
between the bacterial metabolomes [39]. These multivariate 
statistical techniques typically involve multiple replicates of 
1D 1H NMR or 2D 1H,13C HSQC spectra for each bacterial 
class or group (e.g., wild-type, mutant, drug treated, etc.). 
The exact number of replicates is dependent on a number of 
factors: (i) the variance within a group, (ii) the variance 
between groups, (iii) the number of variables, and (iv) type 
of statistical analysis performed [59, 60].  

In most metabolomics experiments, the number of 
biological samples is significantly smaller than the number of 
variables; in this case, the variables correspond to peaks in 
the NMR spectra or the detectable metabolites [60]. For this 
reason, a larger number of replicates (≥ 6) per class are 
required to obtain a statistically significant PCA or OPLS-
DA model. While greater numbers of replicates are 
desirable, there are practical considerations to increasing the 
number of replicates, including increased experimental time, 
availability of incubator space, and practical limits on the 
number of samples that can be simultaneously prepared and 
processed within a reasonable time frame. The increased 
time, larger number of samples, and added complexity may 
be detrimental to maintaining consistency between samples, 
where metabolite stability may become more of an issue 
[61]. So the potential benefit in improving the reliability of 
the PCA or OPLS-DA models may be negated by too large of 
a sample size if sample consistency is sacrificed. In general, 6 
to 10 replicates per class can be routinely handled while 
providing a statistically significant PCA or OPLS-DA model. 
Lastly, to increase the sample consistency, the application of 
an automated sample changer or flow-probe can minimize 
variability by eliminating human involvement and providing 
a uniform and consistent protocol for NMR data collection. 
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3. Sample Preparation 

3.1 Techniques for consistent bacterial cultivation 

Consistency is critical to metabolomics, where variations 
in a bacterial metabolome may be introduced by cultivation 
protocols. To achieve the reproducible cultivation of bacteria 
requires consideration of three variables: bacterial strain, 
culture medium, and cultivation conditions. Strain selection 
is often driven by investigator preference, availability, or 
cultivability. The choice of culture medium will largely de-
pend on which, if any, isotopically-labeled metabolite is be-
ing followed. For example, when using 15N-arginine, it is 
impractical to add labeled arginine to a complex medium 
containing an unknown concentration of unlabeled arginine. 
In this example, to achieve maximal labeling of the bacteria, 
it would be best to use a chemically defined medium lacking 
arginine. Importantly, the culture medium has to be consist-
ently employed throughout a specific metabolomics study of 
a defined set of bacterial strains. A different culture medium 
cannot be used for metabolomics fingerprinting and profil-
ing, it cannot vary based on the requirements of the bacterial 
strain or to accommodate an experimental variable. For ex-
ample, if a mutant bacterial strain requires the addition of a 
supplement for viability, then it is also necessary to add the 
same amount of the supplement to all other bacterial cul-
tures in the study. Simply, any difference in the composition 
of the culture media will induce changes in the metabolome 
that will mask or complicate any analysis. Of course, the 
culture medium needs to be optimized for the specific re-
quirements of each species and bacterial strain and, corre-
spondingly, will likely vary between metabolomic studies. A 
metabolomics study employing Staphylococcus epidermidis 
will use a different culture medium than a study involving 
Mycobacterium smegmatis. 

Bacterial cultures also need to be properly handled in or-
der to avoid inducing biologically irrelevant changes. For 
example, pre-warming the culture medium prevents temper-
ature shock and minimizes variation between biological rep-
licates. Similarly, randomizing the samples from each group 
and class also minimizes bias that may occur if all the sam-
ples are processed in a predefined order. Importantly, differ-
ent cell types may require special care or different handling 
protocols. Cultivation conditions will also vary depending 
upon the experiment; however, consideration must be given 
to each of the following: temperature, pH buffering (if used), 
% CO2 (if used), the flask-to-medium ratio, the revolutions 
per minute of agitation (if used), the use of baffled or non-
baffled flasks, and the inoculum dose. In effect, one protocol 
does not necessarily “fit all” and a general metabolomics 
protocol needs to be optimized for each experiment and cell 
type.  

3.2 Sample optimization to maximize NMR sensitivity  

Identifying an optimal culture size is an important next 

step in the design of a metabolomics study. The volume of 
the bacterial culture should be large enough to provide a 
sufficient number of cells to maximize the NMR signal-to-
noise, but small enough to simplify the handling of numer-
ous replicate samples. An appropriate cell density must be 
determined empirically for each species and bacterial strain, 
which will also limit the culture size. Similarly, the growth 
phase chosen for harvesting bacteria will also contribute to 
defining the optimal culture size since cell density changes 
drastically between the lag, exponential and stationary phas-
es. In our experience with staphylococcal and mycobacteria 
cultures, media volumes between 15 to 50 mL are used to 
grow cells to an optical density at 600 nm (O.D.600nm) of 1-2 
for bacterial cultures collected during the exponential phase. 
Conversely, media volumes of between 3 to 5 mL are used to 
grow cells to an O.D.600nm of 3 to 7 for bacterial cultures col-
lected during the stationary phase (e.g., 6 to 7 for Staphylo-
coccus epidermidis, and 3 to 4 for Mycobacterium smegmatis). 
The overall goal is to have an O.D.600nm of 10 to 20 after the 
bacterial cells have been concentrated to a final volume of 1 
ml. This will ensure metabolite concentrations sufficient for 
detection by NMR. These culture volumes and O.D.600nm val-
ues should be viewed as guidelines and targeted goals that 
may require further optimization for different bacterial 
strains or species. 

Ideally, each bacterial culture should contain the same 
number of cells and be at the same growth phase when har-
vested. In reality, differences in cultivation conditions, me-
dia, and/or bacterial strains may substantially affect growth 
rates and/or growth yields. The two more common ap-
proaches to compensate for different bacterial growth rates 
are: collect the bacteria when they have reached the same cell 
density, but at different times to account for the different 
growth rates; and harvest the bacteria at the same time but 
harvest equivalent cell numbers. The number of bacterial 
cells in a given culture is estimated by measuring the culture 
turbidity using a standard optical density method. As exam-
ples, in staphylococci, the exponential and stationary growth 
phases were typically analyzed at the 2 h and 6 h time points, 
respectively [5]. For our mycobacterial experiments, a con-
sistent growth phase was achieved by harvesting bacteria at a 
uniform O.D.600nm of 1.2. In practice, it is extremely difficult 
to harvest every bacterial culture with an identical O.D.600nm 

value. To correct for this variability, all the bacterial cultures 
are normalized to the same O.D.600nm value. Simply, the cul-
tures are suspended into a phosphate buffer until the 
O.D.600nm values are equal. Alternatively, the bacterial cell 
cultures can be normalized based on colony-forming units 
(CFU), if OD-CFU calibration curves are available, or total 
protein concentration. 

3.3 Sample preparation protocols to maximize isotope labeling 
efficiency 

Metabolomics profiling requires 13C- or 15N-labeled me-
tabolites and defines the choice of culture media. In our la-



Halouska et al., 2013 | Journal of Integrated Omics 

120-137: 125 

boratories, we typically label staphylococci using 13C-glucose 
in the complex medium tryptic soy broth (TSB) that is de-
void of unlabeled glucose [6, 7]. This medium allows for 
maximal biomass generation, while assuring that nearly all 
(~99%; 1.1% is due to naturally occurring 13C) of the 13C-
labeled metabolites in the metabolome were derived from 
glucose. Similarly, we have labeled mycobacteria using 13C-
glucose or 13C-glycerol in Middlebrook 7H9 Albumin Dex-
trose Complex (MADC; Becton-Dickinson) media. We have 
also supplemented culture media with 13C-alanine, 13C-
aspartate, 13C-glutamate, 13C-proline and 13C-pyruvate as a 
more targeted approach to the analysis of the metabolome. 
These metabolites are associated with a limited number of 
metabolic pathways. The analysis of the metabolome can be 
further focused by using a targeted metabolite where only 
one or a few specific carbons in the metabolite are 13C la-
beled. Only the metabolic pathways involving the specific 13C
-labeled carbon will be observable by NMR. The concentra-
tion of the 15N-, or 13C-labeled metabolite needs to be high 
enough (≥ 1 to 5 μM) to be detected by NMR. In our experi-
ence with staphylococcal and mycobacterial cultures, the 
volumes range from 25 mL to 100 mL and the culture media 
should be supplemented with approximately 2.5 to 4 g/L of 
13C6-glucose or ~10-15 mg/L of a targeted metabolite like 13C
-D-alanine in order to acquire a 2D 1H-13C HSQC spectrum 
with acceptable signal-to-noise.  

3.4 Protocols for determining an optimal drug dosage or ad-
ministering other stress treatments  

To ensure consistency, the experimental variable such as a 
drug treatment, environmental stimuli, or gene knockout 
needs to be uniformly applied to the “treatment” class. An 
additional consideration for treatment of cultures, is that the 
impact on the metabolome should be strong enough to de-
tect [49]. In other words, a particular drug dosage needs to 
be large enough to affect the cellular metabolome relative to 
untreated cells, but should not induce cell death. In our ex-
perience, a drug concentration that inhibits bacterial growth 
by 50% relative to untreated cultures is a desirable target [49, 
50]. The availability from the literature of a minimal inhibi-
tory concentration for the strain (MIC), or otherwise for the 
population isolates (MIC50), provides a good starting point 
for optimizing a drug dosage, but the actual dosage must be 
determined empirically for each set of cultivation conditions. 
In our experience, literature MIC or MIC50 values tend to be 
too low for cultivation conditions used for metabolomics. 
We typically test drug concentration ranges at between 1 to 
24 times the reported MIC or MIC50 values in order to iden-
tify an optimal drug dosage. Importantly, this also implies 
that drugs with a range of biological activity will require 
different drug concentrations in a metabolomics study; 
hence, the use of the 50% inhibition of growth is used as a 
metric as opposed to drug concentration. Typically, in our 
experiments the drug treatments are normally administered 
during the exponential phase and the bacteria are allowed to 

grow for at least one generation before harvesting. In our 
experience, this provides a sufficient amount of time for the 
drug to affect cell physiology and induce a perturbation in 
the metabolome. Administering a drug at an earlier time 
point can be problematic because of the inability to harvest 
enough bacteria.  

3.5 Quenching, washing and harvesting the bacterial cells 

Speed is critical to harvesting bacteria without inducing a 
change to the metabolome. Changes occur quickly because 
of different metabolite turnover-rates, varying stabilities, and 
the induction of stress responses, among other factors [61-
63]. As bacteria are being harvested, the environment is 
changing dramatically: (i) the bacteria are either adhered to 
the surface of filter paper or at the bottom of a centrifuge 
tube under anaerobic conditions, (ii) the temperature is 
changed from 37oC to ~ 0oC, and (iii) the growth media is 
replaced with a phosphate buffer. To prevent perturbations 
to the metabolome caused by handling of the cell samples, 
the bacteria need to be rapidly quenched in order to stop all 
cellular processes from responding to these changes. 
Quenching efficiency has been widely discussed in the 
literature [42, 64-66]. Importantly, the quenching technique 
employed also defines the washing protocol and the order 
that quenching, washing and cell separation takes place. Our 
quenching techniques consist of filtered cells being quickly 
submerged into liquid nitrogen or the cells and media being 
directly added to -60oC cold ethanol or methanol solution 
while being vortexed. The media and ethanol/methanol 
volumes are at an equal 1:1 ratio. After centrifugation, the 
supernatant is decanted and disposed of, and the cell pellet is 
ready for washing. Unfortunately, there is a possibility of cell 
leakage and loss of metabolites when the cells are directly 
added to the cold ethanol or methanol solution.  

Before intracellular metabolites can be analyzed, the 
bacteria need to be rapidly separated from the culture media. 
Filtration and centrifugation are both routinely used in our 
laboratory to separate bacterial cells from the media. 
Filtration has a definitive advantage because it is significantly 
faster than centrifugation, but challenges in removing and 
collecting intact cells from filter paper may lead to sample 
variability. Conversely, the variability between metabolome 
replicates is expected to be reduced with centrifugation 
because of the ease in handling the cells. Nevertheless, our 
experience with washing bacterial cells using either filtration 
or centrifugation has resulted in essentially identical 
metabolomics fingerprints (Figure 2a); thus, any undesirable 
variation within a group likely occurs during sample 
preparation. 

The use of centrifugation or filtration also determines the 
quenching protocol [36]. Harvesting bacteria using 
centrifugation requires quenching the bacteria using the 
direct addition to -60oC cold ethanol or methanol. The 
bacteria, culture media, and quenching solution are in a 
properly sized conical centrifuge tube that is centrifuged for 
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8 minutes at 4,284 g (bucket rotor) and ≤ 4oC. Following 
centrifugation, the culture media and quenching solution are 
decanted and the bacteria are suspended in 30 mL of an ice 
cold wash. We routinely wash bacteria with either a 
phosphate buffer (20 mM, pH 7.2), or phosphate buffered 
saline (PBS; 6 mM phosphate buffer, pH 7.4, 137 mM NaCl 
and 2.7 mM KCl) to remove residual media and avoid 
contamination of the metabolome. The buffered wash 
eliminates any impact on the cells from a pH or osmotic 
change that may lead to cell leakage and loss of metabolites. 
The bacteria are centrifuged again, the wash is decanted off 
and the process is repeated. After two washes, the cell pellet 
is suspended in 1 mL of the ice cold wash and transferred to 
a 2 mL vial for cell lysing. Additional washings provide an 
insignificant benefit in removing media contaminates, but 
results in an undesirable increase in time. The cells are kept 
on ice throughout this entire process. 

Harvesting bacteria by vacuum filtration collects the 
bacteria on sterile filter paper (0.45 μm pore size; Millipore), 
while simultaneously removing the media. The number of 

bacteria that can be harvested onto a filter must be 
empirically determined to prevent a filter blockage. Under 
proper conditions, removing the media should take less than 
a minute, and should never exceed two minutes. If this 
cannot be achieved, then the bacteria need to be harvested 
using centrifugation. After filtration, the filter paper 
containing the cells is then quickly placed into a 50 mL 
conical centrifuge tube and submerged into liquid nitrogen 
to freeze and quench the cells. The conical vial is then 
warmed by placing it into a bucket of ice for ~1 to 2 minutes. 
This prevents freezing of the 1 mL of wash that is added to 
the conical vial. The cells are gently removed from the filter 
paper with the wash and then transferred to a 1.5 mL 
microcentrifuge tube. The cells are centrifuged and washed 
once (1 mL). 

3.6 Cell lysing and metabolite extraction 

The cells need to be lysed in order to extract the cellular 
metabolome. Cells can be lysed by chemical or physical 

Figure 2. Illustrations of the impact of (a) filtration and centrifugation, (b) number of extraction steps, (c) type of wash buffer, and (d) 
lyophilization on the composition of the metabolome. 



Halouska et al., 2013 | Journal of Integrated Omics 

120-137: 127 

means, but the use of chemicals runs the added risk of 
contaminating the metabolome. Thus, the FAST-Prep bead 
beating method of lysing cells is our preferred approach. 
Each sample is placed into a 2 mL micro-centrifuge tube 
with small glass beads (Lysing Matrix B; MP Biomedical) 
and 1 mL of extraction buffer. The cells are crushed by bead 
beating for 40 to 60 seconds in the FAST-Prep instrument at 
a speed of 6.0 m/s. This process is repeated after keeping the 
crushed cells on ice for 5 minutes. The sample is then 
centrifuged for 2 minutes at 17,000 g to pellet the cell debris. 
The supernatant with the extracted metabolites is collected. 
The cell debris is washed 1 to 3 times with 1 mL of the 
extraction buffer to maximize the metabolome yield (Figure 
2b). Also, double distilled water or a phosphate buffer are 
routinely used as the extraction buffer, since both 
approaches provide similar results (Figure 2c). All extracts 
per sample are combined for lyophilization, where the 
sample is then dissolved in 700 μL of a phosphate buffer in 
D2O at pH 7.2 (uncorrected). Lyophilization may negatively 
impact some volatile metabolites, but, in general, no effect is 
observed (Figure 2d). A major concern during the extraction 
step is maximizing the overall yield while minimizing any 
perturbation to the metabolome. In our experience, the cell 
lysing and metabolite extraction process will require 
approximately 45 minutes for 30 cultures. The metabolomics 
samples can be stored in a -80oC freezer or directly 
lyophilized over-night. 

4. NMR Spectroscopy 

4.1 One-dimensional 1H NMR methodology 

One-dimensional (1D) 1H (proton) NMR is an unbiased, 
nonselective, and nondestructive approach that requires no 
modification of the samples, where the data can be collected 
in a high-throughput manner. A 1D 1H NMR spectrum con-
tains numerous proton signals generated from a complex 
metabolomics mixture, where the chemical shift of each sig-
nal describes the structural characteristic of a specific metab-
olite. Moreover, the peak intensities or volumes are directly 
proportional to the concentration of each metabolite. Quan-
tification of metabolites can be achieved by using an internal 
standard with a known concentration, where we routinely 
use 50 μM 3-(trimethylsilyl) propionic acid-2,2,3,3-d4 
(TMSP-d4, Sigma). Thus, 1D 1H NMR experiments com-
bined with multivariate statistics are commonly used for the 
global analysis of the metabolome. 

Collecting 1D 1H NMR data for metabolomics is fast and 
simple, and provides highly reproducible and accurate re-
sults. Importantly, the NMR experimental parameters need 
to be identical for each metabolomics sample in order to 
collect reliable metabolomics data. Any per sample variation 
will erroneously bias the resulting clustering patterns in the 
PCA and OPLS-DA scores plot. To avoid this and maintain 
sample consistency, we use a BACS-120 sample changer, 
Bruker ICON-NMR, an automatic tuning and matching 

(ATM) unit, and autoshim to automate the NMR data col-
lection. Nevertheless, instrument drift may still occur during 
the high-throughput metabolomics screen, so it is also im-
portant to randomize the samples during NMR data collec-
tion. If an NMR spectrum is collected first for all the control 
samples followed subsequently by each treatment class, there 
is a significant potential of inducing a biologically irrelevant 
bias into the analysis. The clustering pattern in the PCA and 
OPLS-DA scores plot may be dominated by the order of data 
collection instead of the expected biological differences. 

In our laboratory, a typical 1D 1H NMR spectrum is col-
lected using 128 scans and 32k data points on a Bruker 500 
MHz Avance DRX NMR spectrometer equipped with a tri-
ple-resonance, Z-axis gradient cryoprobe. The acquisition 
time is approximately 10 minutes per sample. The goal is to 
obtain optimal signal to noise while minimizing the total 
experimental time. We previously demonstrated that spec-
tral noise is detrimental to the resulting PCA and OPLS-DA 
scores plot [55]. Random noise fluctuations results in large 
and irrelevant variations in the scores clustering. To avoid 
this problem, spectral noise needs to be removed prior to 
PCA and OPLS-DA. Correspondingly, the quality of the 
within class clustering in PCA and OPLS-DA scores plot is 
directly dependent on the spectral signal-to-noise (Figure 3). 
The within class variance decreases dramatically as the 
number of scans (signal-to-noise) is increased from right to 
left in the scores plot. Importantly, the spectral noise was still 
removed prior to PCA. Thus, the accuracy of identifying 
similarities or differences between multiple classes is 
dramatically improved by reducing within class variance, 
which is achieved by improving spectral sensitivity. Also, 
correctly identifying class differences improves with the 
number of replicates (Figure 4). The statistical significance of 
cluster separation as measured by p-value [67] is shown to 
decrease as both a function of group variance and the 
number of replicates. As a result, we prefer to use ten 
replicates per class and strive to achieve an average signal-to-
noise ratio of > 100 to 200. This is achieved by simply 
increasing the number of scans or the number of cells, 
whichever is more practical. While signal-to-noise has a 
dramatic impact on scores clustering, PCA and OPLS-DA is 
indifferent to changes in spectral resolution unless the 
number of data points is ≤ 2K.  

A D2O phosphate buffer is the typical solvent of choice for 
aqueous metabolomics samples in order to efficiently 
remove residual water signals and avoid interference from 
buffer signals. Water and buffer signals are problematic since 
they can distort the NMR spectrum and may overlap and 
obscure important metabolite signals. Most NMR processing 
software can automatically remove the residual water peak, 
but extra data processing is required to correct for baseline 
distortions induced by the solvent. Unfortunately, simply 
applying a baseline correction changes the PCA and OPLS-
DA clustering patterns [68]. Furthermore, different baseline 
correction protocols will induce variable changes into the 
scores plot. Also, removing the residual water peak may 
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result in a potential loss of information by also removing 
metabolite peaks near the water signal. Instead, a water 
suppression technique that experimentally removes the 
water peak without inducing baseline distortions is the 
preferred alternative.  

There are a variety of NMR pulse sequences for water 

suppression that are available to the metabolomics 
community, such as WATERGATE, water pre-saturation, 
WET, and PURGE [69-73]. Our preferred choice for a water 
suppression pulse sequence is Solvent-Optimized Gradient-
Gradient Spectroscopy (SOGGY). SOGGY does an 
outstanding job in eliminating the water signal without 

Figure 3. Illustration of the impact of the NMR signal-to-noise on within class variation in a PCA scores plot. From right to left, the 1D 1H 
NMR spectra were collected with an increasing number of scans (1, 2, 4, 8, 16, and 32) resulting in a proportional increase in signal-to-noise. 
All other experimental parameters were kept constant. 

Figure 4. Illustration of the impact of within group variation and the number of replicates on the p values calculated between clusters in 
a simulated PCA scores plot. From top to bottom, p values from the simulated PCA scores plot were calculated with an increasing number of 
replicates (6, 8, 10) resulting in a proportional decrease in p values. Similarly, increasing the group variation by increasing the standard devia-
tion (σ) per cluster resulted in a significant increase in p values. 
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inducing any base line distortions (Figure 2) [73]. SOGGY is 
a variant of excitation sculpting that employs a pulsed field 
gradient with a simple phase-alternating composite pulse. 
SOGGY offers the flexibility to optimize the 180 degree hard 
pulse to achieve optimal excitation of the water signal, and 
adjusting the 180 degree soft pulse to optimize the range of 
the water frequency to be suppressed [73, 74]. As a result, 
SOGGY efficiently suppresses the water signal while 
removing any phase cycle artifacts. A flat baseline is obtained 
while also maintaining metabolite signals near the water 
signal [73]. SOGGY completely eliminates the need to apply 
any baseline correction. 

4.2 Two-dimensional 1H-13C HSQC NMR methodology 

The severe overlap of signals in a 1D 1H NMR spectrum is 
a challenge for metabolite identification. The difficulty arises 
because hundreds to thousands of peaks occupy a small 
chemical shift range (~10 ppm), where multiple metabolites 
share similar chemical shifts. Thus, we typically do not use 
1D 1H NMR spectra to assign metabolites. Instead, we 
routinely use 2D 1H-13C HSQC experiments for metabolite 
assignments. The 2D 1H-13C HSQC experiment is a more 
reliable approach for metabolite identification because of the 
significantly higher resolution and the correlation between 
1H and 13C chemical shifts for each C-H pair in a molecule 

[75, 76]. Also, the 2D 1H-13C HSQC experiment simplifies 
the analysis of the metabolome because only compounds 
containing a 13C-carbon derived from the 13C-labeled 
metabolite added to the media will be detected.  

In our laboratory, we use a standard Bruker 2D 1H-13C 
HSQC pulse sequence on our 500 MHz spectrometer, where 
an acceptable signal-to-noise is achievable using 64 scans. 
Similarly, a reasonable digital resolution is achieved by 
collecting 2K and 128 data points in the direct and indirect 
direction, respectively, with a corresponding spectral width 
of 10 ppm and 140 ppm along the 1H and 13C axis, 
respectively. Since some aromatic C-H pairs have a 13C 
chemical shift greater than 140 ppm, the spectrum will 
contain folded peaks, but the folded peaks will not interfere 
with or overlap with other metabolite peaks due to their 
unique position along the 1H axis (~ 7.0 ppm). This folding 
technique allows for an increase in the digital resolution 
without incurring an increase in acquisition time. In general, 
the 2D 1H-13C HSQC experiment requires approximately 4 
hours per sample on our system. 

A conventional 2D 1H-13C HSQC spectrum is useful for 
detecting metabolite changes by overlaying multiple spectra 
to identify missing peaks or peaks with significant intensity 
changes. Unlike 1D 1H NMR spectra, obtaining metabolite 
concentrations is more difficult because peak intensities are 
dependent on J-couplings, dynamics and relaxation, in 
addition to metabolite concentrations [77, 78]. To quantify 
absolute metabolite concentrations, we use the Time-Zero 
HSQC (HSQC0) experiment [77]. This approach requires 
collecting a series of three HSQCs spectra (HSQC1, HSQC2, 

HSQC3) with an increased number of pulse sequence 
repetitions. A natural log plot of peak areas or intensities 
versus the increment number (1, 2, 3) allows for an 
extrapolation back to increment 0 or zero-time. The 
experimental parameters used in the HSQC0 experiment is 
similar to the conventional method, but with some minor 
variations. The number of scans is increased to 128 due to 
the decrease in signal-to-noise in HSQC2 and HSQC3. To 
partially compensate for the increase in experimental time, 
the number of data points in the indirect dimension is re-
duced to 64. In general, the HSQC0 set of experiment re-
quires approximately 6 hours per sample on our system. 

5. Data analysis 

5.1 Preprocessing of 1D 1H NMR data 

The 1D 1H NMR spectra are minimally processed (Fourier 
transformed and phase corrected) using ACD/1D NMR 
Manager (Advanced Chemistry Development). Each NMR 
metabolomics sample contains 50 μM of TMSP-d4 as an in-
ternal standard, where each NMR spectrum is referenced to 
the TMSP-d4 peak and uniformly aligned to 0.00 ppm. Also, 
all peak heights are normalized to the intensity of the TMSP-
d4 peak. Intelligent bucketing within the ACD/1D NMR 
Manager is then used to integrate each spectral region with a 
bin size of 0.025 ppm. The spectra are normalized; noise re-
gions and residual solvent and buffer resonances are re-
moved, and then the remaining bins are scaled prior to PCA 
and OPLS-DA using the commercial SIMCA12.0+ 
(UMETRICS) statistical package (http://
www.umetrics.com/).  

The need for data normalization and scaling prior to mul-
tivariate statistical analysis has been extensively discussed in 
the literature [79, 80]. Normalization adjusts for 
experimental variations between replicates, different number 
of cells, varying signal-to-noise, etc., and minimizes these 
contributions to the clustering patterns in PCA and OPLS-
DA scores plot. We have encountered significant success in 
using a Z-score or center averaging the spectrum: 

where is the average signal intensity in a given spectrum, 
σ is the standard deviation in the signal intensity, and Xi  is 
the signal intensity within bin i (Figure 5a). After normaliza-
tion, all the noise bins are uniformly removed. This was ini-
tially accomplished by manually identifying a “reference” 
noise region above 10 ppm and below 0 ppm; and calculat-
ing an average noise value. If a bin across all replicates had 
an integral value of less than twice the average noise, it was 
also identified as noise and removed (Figure 5b). The proto-
col for identifying noise regions has been recently improved 
upon and results in smaller within class variations (Figure 
5c). This also results in an improved separation between tru-
ly distinct classes and removed erroneous separations. For 

(1) 

X 
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example, the statistical significance between clusters 6hwt 
and 6hacna improved from a p-value of 3.1x10-13 to 8.1x10-15, 
while the small, but biologically irrelevant, separation be-
tween clusters 2hwt and 2hacna (p-value 2.5x10-3) was re-
moved (Figure 5). Instead of using an average minimal sig-
nal intensity to define noise, we now define noise based on a 
relative standard deviation. This is based on the expectation 
that real NMR peaks from metabolites will have a higher 
intrinsic variability compared to the noise because of biolog-
ical variations that naturally occur even between within class 
replicates. Conversely, the variability of the noise should be 
effectively constant for a given spectrometer operating with-
in normal parameters. Simply, the standard deviation and 
average is calculated for each bin, where the standard devia-
tion is normalized by the average peak intensity. This avoids 
eliminating weak peaks with a relatively small standard devi-
ation. The same is done for the reference noise region, which 
is then used to define noise: 

where σi’,σn’ are the relative standard deviations (absolute 
standard deviation divided by the mean) for the ith bin in 
the spectral region and nth bin in the reference noise region, 
respectively, and avg(σn’) and sd(σn’) are the mean and 
standard deviation of σn’ respectively. In effect, any peak that 
falls within the normal distribution of the reference noise 
region is defined as a noise bin. This approach is better at 
defining noise peaks in crowded and overlapping regions of 
the NMR spectra.  

In addition to normalization, each bin or column in the 
data matrix also needs to be scaled to account for the large 
dynamic range in peak intensities. PCA and OPLS-DA em-
phasizes the absolute variation in bins between classes. Cor-
respondingly, the relative variation of an intense peak may 
be insignificant compared to a weak peak, but the absolute 
changes in its intensity may completely mask biologically 
relevant changes in a small peak. Scaling increases the weight 
of the low intensity peaks so strong peaks do not dominate 
in PCA and OPLS-DA [79, 80]. In our experience, unit 
variance scaling, also known as autoscaling or a Z-score (see 
eqn. 1), has been shown to be effective in generating reliable 
clusters with the correct separation based on biologically 
relevant class distinctions. Also, within class variance is 
reduced using autoscaling, which is our default scaling 
method. 

5.2 Multivariate statistical analysis of 1D 1H NMR data 

We routinely apply PCA, a non-supervised technique, to 
determine if the 1D 1H NMR data can easily distinguish 
between the various test classes. PCA provides an unbiased 
view of group clustering in the resulting 2D scores plot. We 
only use a three-dimensional (3D) scores plot if class 
separation in a 2D scores plot is insufficient and the PC3 
contribution is significant (> 5 to 10%). OPLS-DA is only 
used if class separation is observed in the PCA scores plot. 
OPLS-DA is a supervised technique and assesses a 
relationship between the NMR data class designations. We 
limit OPLS-DA to only two class designations that 

Figure 5. Illustration of the impact of NMR preprocessing on within and between class variations in a PCA scores plot. (a) The 1D 1H 
NMR spectra was not properly preprocessed. The spectra were not normalized and the noise was not removed. The spectra were only Fourier 
transformed, phased corrected, and the residual H2O resonance was removed. (b) The 1D 1H NMR spectra were processed as in (a) with the 
addition of normalization using center averaging, but without noise removal. (c) The 1D 1H NMR spectra were processed as in (b) with the 
addition of noise removal. Each spectrum was binned using intelligent bucketing with a bin size of 0.025 ppm. The ellipses correspond to the 
95% confidence limits from a normal distribution for each cluster. The PCA scores plots compare the metabolomes of S. aureus wild-type 
(wt) strain SA564 with an aconitase mutant (acna) strain SA564-acnA::tetM at either two hours (2h) or six hours (6h) of cell growth. Below 
each PCA scores plot is a corresponding dendrogram generated from the scores using Mahalanobis distances, with p values for the null hy-
pothesis reported at each branch.  

 Noise:   σi’≤σ0’     (2) 
 Cutoff:  σ0’=avg(σn’)+2*sd(σn’)   (3) 
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differentiate between the single control group (0) and the 
entire treatment group (1). As a supervised technique, OPLS
-DA maximizes a separation between these two classified 
groups, while minimizing within class variations [39]. Thus, 
OPLS-DA identifies the important spectral features 
(metabolites) that primarily contribute to class separation. 
We routinely use an OPLS-DA S-plot or loading plot (Figure 
1) to readily identify the key metabolites that contribute to 
class separation. Since OPLS-DA is a supervised technique 
and can generate a class separation even for random data 
[81], it is essential to verify the model [46]. But this is also an 
advantage of OPLS-DA over PCA; the statistical significance 
of the model is quantified. We cross-validate OPLS-DA 
models using a modified leave-one-out method [82, 83] and 
CV-ANOVA [84]. The modified leave-one-out method 
provides a quality assessment score (Q2) and R2 values, 
where CV-ANOVA provides a standard p-value. The 
theoretical maximum for Q2 is 1, where a value of ≥ 0.4 is an 
empirically acceptable value for biological samples [85], but 
Q2 does not have a critical value for inferring significance. It 
is still possible for an invalid model to produce a large Q2 
value. Similarly, the R2 values only provide a measure of the 
fit of the data to the model. But large differences between Q2 
and R2 (R2 >> Q2) does suggest an over-fit model. 
Conversely, a p-value << 0.05 from CV-ANOVA provides 
clear validation of the OPLS-DA model.  

In addition to validating the OPLS-DA model, it is also 
extremely important to verify the statistical significance of 
the clustering patterns in the PCA and OPLS-DA scores plot. 
Is the between group difference larger than the within group 
variations? One key factor is the number of replicate 
samples. We have previously shown that increasing the 
number of replicates improves the statistical significance of 
cluster separation [86]. This finding is also supported by the 
increase in p-values seen with an increase in within class 
variations (Figure 4). Again, increasing the number of 
replicates improves the statistical significance of the class 
separation (lower p-value) even when within class variation 
increases. Correspondingly, we routinely use 10 replicates 
per group in our metabolomics study to improve the 
likelihood of observing statistical significant class 
separations.  

It is also important to visually define each group or class 
within the PCA and OPLS-DA scores plot and to classify the 
statistical significance of the class separation. We developed 
a free PCA and OPLS-DA utilities software package (http://
bionmr.unl.edu/pca-utils.php) [67] that draws ellipses or 
ellipsoids around each group cluster in a scores plot, where 
the ellipse corresponds to the 95% confidence limits from a 
normal distribution for each cluster. Visual separation of the 
ellipses infers a class separation. The same software package 
is also used to generate a metabolomics tree diagram based 
on the group clusters in the scores plot [67, 86]. Simply, a 
centroid from each cluster is used to calculate a Mahalanobis 
distance between clusters, where dendrograms are then 
generated from the resulting distance matrix. The 

significance of each node (cluster separation) is determined 
by using standard bootstrapping techniques and returning a 
bootstrap number [87], where a value above 50 infers a 
significant separation; or from Hotelling’s T2 and F-
distributions that returns a p-value, where a number << 0.05 
infers a statistically significant separation. 

Observing a statistically significant difference in the global 
metabolome between two or more bacterial samples is 
typically the first objective of a metabolomics investigation. 
While this difference may infer some biological significance, 
the ultimate goal is to identify the underlying metabolites 
and associated pathways that are the primary contributors to 
the observed class separation in the PCA and OPLS-DA 
scores plot. One approach is to generate an S-plot (Figure 1) 
from the resulting OPLS-DA analysis. The S-plot identifies 
the key bins or 1H chemical shifts that are correlated or anti-
correlated with the separation between the two classes in an 
OPLS-DA scores plot. The 1H chemical shifts can then be 
compared against a number of online NMR metabolomics 
databases [88-92] to assign the metabolites. Unfortunately, 
an unambiguous assignment is rarely possible because of the 
low chemical shift dispersion and the large number of 
potential metabolites. Instead, 2D NMR experiments 
combined with the biological knowledge of the system under 
investigation are required to improve the accuracy of 
metabolite identification. 

5.3 Metabolite Identification 

5.3.1 Automated peak picking of 2D NMR data  

2D 1H,13C HSQC and 1H,1H TOCSY spectra are 
commonly used for metabolite identification because of the 
increase in chemical shift resolution achieved by spreading 
the information out into two-dimensions. Also, the 
correlation between 1H chemical shifts for each J-coupled H 
pair; and the correlation between 1H and 13C chemical shifts 
for each C-H pair significantly reduces the assignment 
ambiguity. This occurs because both chemical shifts have to 
match a single metabolite in the database to make an 
assignment. Despite the advantages, peak picking and 
organizing a table of intensities from a 2D NMR experiment 
is a time consuming process, especially when multiple 
spectra are involved. Numerous software packages are 
available to automate the peak picking of 2D NMR spectra, 
however; it is extremely difficult, if not impossible, to align 
and match multiple sets of spectra with different peak 
patterns due to unique metabolomes.  

For example, three different sets of cell cultures (different 
cell types, treatments or environmental conditions, etc.) will 
each exhibit a distinct set of peaks in the NMR spectrum due 
to the presence of unique metabolites. These unique peaks 
will be mixed with other peaks common to all three groups, 
but the relative peak intensities are likely to vary due to 
different metabolite concentrations. Thus, if the control 
group is designated as the reference spectrum for automated 
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peak picking, a peak list will be generated that only contains 
peaks observed in the control spectrum that are above the 
designated noise threshold. Correspondingly, peaks unique 
to the other two groups will be missed when this peak list is 
used to peak pick their spectrum. In addition, weak peaks 
may also be missed due to different noise levels between the 
spectra and a corresponding difference in the threshold 
setting for peak picking. Instead, a composite reference 
spectrum for automated peak picking needs to be generated 
that captures all the peaks present in the three separate 
groups. We accomplish this task by using the addNMR 
function in the free NMRpipe software package (http://
spin.niddk.nih.gov/NMRPipe/) [93]. As the name implies, 
addNMR mathematically sums all spectra together from the 
three groups to make a single spectrum. This resulting 
“master spectrum” contains all the peaks observed 
throughout the set of 2D experiments and is used to generate 
a peak list for automated peak picking of each individual 
spectrum. Critically, the 2D NMR spectra need to be 
collected and processed using identical experimental 

parameters (spectral width, data points, zero-filling, etc.) and 
needs to be aligned to an internal reference (TMSP-d4). In 
our experience, all the peaks from the complete set of NMR 
spectra are routinely matched to the reference list by using a 
chemical shift error-tolerance of 0.04 ppm and 0.25 ppm in 
the 1H and 13C dimensions, respectively. This approach has 
greatly simplified and increased the efficiency of a previously 
laborious procedure. The addNMR command can also be 
used to generate a difference spectrum that clearly highlights 
the major spectral changes between two classes (Figure 6).  

5.3.2 Assignment of an NMR peak to a metabolite  

Metabolite identification is an extremely important 
component of the metabolomics process because it enables 
the determination of the key metabolites perturbed by the 
treatment or the metabolites primarily contributing to class 
distinction. This includes the discovery of important 
biomarkers associated with drug efficacy or drug resistance. 
Also, metabolite identification is important to the drug 

Figure 6. (a-c) Illustration of the procedure to generate a “master spectrum” and facilitate automated peak picking by creating a complete 
peak list. (a-b) Representative 2D 1H-13C HSQC spectra obtained from two distinct bacterial cultures, where some major spectral differences 
are highlighted. (c) The two 2D 1H-13C HSQC spectra from (a-b) were added to yield a master spectrum that contains all the observed NMR 
peaks. (d-f) Illustration of the procedure to generate a “difference spectrum” to facilitate metabolite identification by creating a signed (+, -, 
null) peak list. (d-e) Representative 2D 1H-13C HSQC spectra obtained from two distinct bacterial cultures. (f) The two 2D 1H-13C HSQC 
spectra from (d-e) were subtracted to yield a difference spectrum that identifies the NMR peaks, and correspondingly metabolites, that differ 
between the two bacterial cell cultures. Positive peaks, increased metabolite concentration, are colored green and negative peaks, decreased 
metabolite concentration, are colored red. 
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discovery process by either identifying metabolic pathways 
affected by a drug to evaluate efficacy or potential toxicity; or 
by identifying potentially new therapeutic targets. 
Nevertheless, accurate metabolite identification is very 
difficult and labor-intensive. The success of metabolite 
spectral assignment relies largely on the completeness of 
metabolomics databases. We routinely use a combination of 
the following freely-accessible databases: Human 
Metabolome Database (http://www.hmdb.ca/) [88], Madison 
Metabolomics Consortium Database (http://
mmcd.nmrfam.wisc.edu/) [89], Platform for RIKEN 
Metabolomics (PRIME) (http://prime.psc.riken.jp/) [90], 
BioMagResBank (http://www.bmrb.wisc.edu/) [91], and 
Metabominer (http://wishart.biology.ualberta.ca/
metabominer/) [92], which provide both redundant and 
complementary NMR spectral data. Importantly, the 
reference NMR spectra in the various databases were 
obtained under different buffer conditions and use different 
internal standards. This results in a range of potential 
chemical shifts for a given metabolite. Thus, the database 
with sample conditions that closely match our experimental 
conditions are used for chemical shift matching. The overall 
goal is to identify a complete set of metabolites as quickly 
and accurately as possible without any bias, by matching the 
experimental chemical shifts from the 2D NMR spectra with 
the values in the database.  

For a 2D 1H-13C HSQC experiment, it is important to 
realize that metabolites may be heterogeneously labeled by 
the carbon-13 source present in the growth media. 
Correspondingly, all the peaks for a specific metabolite may 
not be detectable in the 2D 1H-13C HSQC experiment. Also, 
a reference spectrum for the metabolite may not be present 
in any of the available databases. The assignment of a 
particular peak might still be ambiguous because multiple 
metabolites may contain the same chemical shift or contain 
an identical substructure (e.g., ATP, ADP, AMP or NAD, 
NADPH). Therefore, a few automated filters are applied to 
overcome some of these ambiguities during the peak 
assignment process.  

The first filter is to verify that the bacteria can actually 
produce the proposed metabolite. This is routinely 
accomplished by searching the freely-accessible Biocyc 
(http://biocyc.org/) [94] and KEGG (http://www.genome.jp/
kegg/) [95] database for metabolites known to exist in the 
bacteria under investigation. The second filter is based on a 
differential peak list. All the NMR peaks potentially assigned 
to a specific metabolite should have the same trend relative 
to the control. Obviously, the metabolite can only have one 
concentration and all the NMR peaks need to be consistent 
with this single concentration. Correspondingly, all the 
peaks have to be increased, decreased or the same relative to 
the same peaks in the control spectrum. This is easily and 
quickly visualized by subtracting the two sets of spectra and 
generating a signed (+, -, null) peak list. Peaks assigned to 
the same metabolite have to have the same sign. The third 
filter is based on a biological relationship with other 

metabolites. Simply, the likelihood of a correct assignment 
increases if other metabolites in a specific metabolic pathway 
have also been assigned. It is more likely to observe multiple 
metabolites from the same pathway than various metabolites 
from unrelated pathways. Similarly, if there is a direct 
metabolic path between two or more metabolites, then their 
assignments are more likely to be correct. The final filter is 
the application of our biological knowledge of the bacterial 
system under investigation. The pathways or metabolites 
that are expected to be perturbed by the treatment would be 
given precedent in the assignment process. As a simple 
example, a comparison between wild-type and mutant 
bacterial strains where aconitase has been inactivated would 
reasonably be expected to lead to changes in metabolites 
associate with the TCA cycle. Likewise, a comparison 
between untreated and drug-treated cells would be expected 
to lead to changes in metabolic pathways inhibited by the 
drug.  

5.3.3 Statistical analysis of the 2D 1H-13C HSQC data. 

After assigning the 2D 1H-13C HSQC spectra to a set of 
metabolites, the next goal is to determine metabolite 
concentration differences between the various bacterial 
culture conditions under investigation. Unfortunately, peak 
intensities in a standard 2D 1H-13C HSQC experiment are 
dependent on multiple parameters [77, 78], so only a relative 
percent change in a metabolite concentration can be 
determined [5]. Alternatively, an absolute concentration can 
be determined using HSQC0, which requires a set of three 
HSQC experiments per sample. We routinely employ both 
approaches [77]. 

A relative difference in peak intensities is determined by 
using a triplicate set of a conventional 2D 1H-13C HSQC 
experiment for each bacterial culture condition. Prior to 
calculating a relative percent change in peak intensities, a 
detailed normalization process is required, which was 
previously described in detail [5]. First, the peak intensities 
within each spectrum are normalized by dividing each peak 
by the internal standard, the intensity of the TMSP-d4 peak. 
Each peak pertaining to a specific chemical shift across each 
triplicate data set is then normalized by the most intense 
peak in the set of three peaks. Specifically, the maximal 
intensity for each peak across all data sets would be set to 
100 and all other intensities are scaled relative to this peak 
intensity. Then all the normalized intensities for a given 
metabolite for each triplicate set are averaged together, and a 
relative percent error can be calculated between different 
cultures. A Student’s t-test or ANOVA is then used to 
determine if the relative change in peak intensities is 
statistically significant at the 95% confidence limit. 
Calculating a relative difference in metabolite concentrations 
can be beneficial to understanding broader changes to the 
system, especially when a cluster of metabolites in a specific 
pathway exhibit a similar trend in concentration changes 
inferring an important role for the metabolic pathway. 
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Nevertheless, this approach is rather cumbersome and does 
not allow for a direct comparison between different 
metabolites.  

Alternatively, we routinely use the HSQC0 experiment to 
determine absolute metabolite concentrations. The overall 
protocol for the extrapolation of peak intensities to time-
zero and the determination of the associated concentration 
has been previously described in detail [77, 78]. A distinct 
advantage of this method is that a single calibration curve 
can be made using multiple compounds with known 
concentrations to correlate the time-zero peak intensity with 
a concentration. Figure 7 illustrates such a calibration curve 
using 5 different mixtures, each consisting of 9 different 13C-
labeled metabolites ranging in concentrations from 5 to 300 
μM. Also, the concentration for each metabolite was 
randomized in each mixture. For example the concentration 
of 13C-D-alanine in the 5 mixtures is 300, 10, 25, 5, and 100 
μM, respectively. The data was fitted using a weighted linear 
least squares calculation. Notably, the best-fit line (R2 0.997) 
has a y-intercept close to zero as expected for a 
concentration of zero. Also, the correlation between peak 
volume and concentration is independent of the metabolite. 
Importantly, the accurate application of the calibration curve 
requires collecting and processing HSQC0 spectra identical 
to the parameters used to obtain the original calibration 
curve. Critically, the receiver gain must be the same for all 
samples, because any change in the receiver gain influences 
the slope of the calibration curve. Also, the addition of 500 
μM TMSP-d4 as an internal standard is crucial, because both 
the calibration samples and experimental samples must both 
be normalized to the TMSP-d4 peak. As an example, if the 

TMSP-d4 peak volumes for the calibration mixtures are 
1000, 500, and 250 for each HSQCi (i = 1, 2, 3) spectrum, 
respectively, then the experimental results for all in vivo me-
tabolite extracts must be normalized so that the internal 
standard (TMSP-d4) peak volumes are also 1000, 500, and 
250. The concentrations are measured in triplicate, where a 
Student’s t-test or ANOVA is used to determine if the con-
centration changes are statistically significant at the 95% 
confidence limit. 

5.4 Metabolomics Network Map 

Metabolites are highly interconnected through numerous 
metabolic pathways that form an extremely complex net-
work [96]. Correspondingly, it is not uncommon to observe 
correlated changes between distantly connected metabolites. 
In effect, metabolomics depends on these complex 
interactions to understand the phenotype of a bacterial cell. 
Thus, a metabolomics network map provides an efficient 
approach to visualize and summarize the overall changes to 
the metabolome, to validate metabolite assignments based 
on clear connections to other metabolites, and the 
identification of key metabolic pathways.  

We have routinely used Cytoscape (http://
www.cytoscape.org/) to easily and quickly generate 
metabolomics network maps [97-100]. Cytoscape is a free, 
user-friendly software package with plug-ins related to 
metabolomics. Cytoscape simply requires a list of the 
metabolites and their associated concentration changes as 
input. The connections between nodes (metabolites) in the 
map are based on metabolic pathways from the freely-

Figure 7. A strong correlation between NMR peak volumes and metabolite concentrations (R2 0.997) is demonstrated by linear regression 
plot generated from HSQC0 data. HSQC0 NMR spectra were collected for five different metabolite mixtures containing nine 13C-labeled com-
pounds with concentrations ranging from 5 μM to 300 μM. The relationship between peak volume and metabolite concentration is inde-
pendent of the metabolite. 
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accessible MetaCyc database (http://metacyc.org/) [101]. An 
example of a typical Cytoscape map summarizing the 
observed changes in the S. epidermidis metabolome caused 
by environmental stimuli associated with biofilm formation 
is shown in Figure 1. The metabolomics network map can be 
easily modified to highlight specific features of the 
metabolome. Edges can be broadened to highlight specific 
pathways; and the color and size of nodes can be adjusted to 
reflect the direction and magnitude of the concentration 
changes, respectively [102]. Cytoscape also provides a range 
of map design choices. Unfortunately, the resulting network 
maps (Figure 1) do not resemble standard metabolic 
pathways. Thus, Cytoscape maps are simply used as a 
template to manually draw more traditional looking 
metabolic pathways. Since Cytoscape maps are so easily 
generated, we also use the software to assist in metabolite 
assignments. Potential lists of metabolite assignments are 
input into Cytoscape to identify metabolites that are isolated 
nodes excluded from the main network map. These 
metabolites are likely misassigned and are reevaluated. In 
addition to Cytoscape, we also use the free R statistics 
package (http://www.r-project.org/) [103] to create heat 
maps from absolute metabolite concentrations or percent 
relative concentration changes. 

6. Conclusion 

NMR metabolomics is an invaluable tool for systems biol-
ogy and its application is rapidly expanding. Global changes 
in the metabolic state of bacterial cells occur as a result of 
environmental stressors, genetic modifications, drug treat-
ments, or numerous other factors. A detailed analysis of the 
differences in the NMR spectra is commonly used to identify 
the key metabolite changes that differentiate between these 
bacterial classes (e.g., controls versus treated). In addition, 
metabolite identification by NMR allows for the subsequent 
identification of the important metabolic pathways that are 
affected by the treatment, providing further insight into the 
underlying biological process. The appeal of NMR metabo-
lomics is its simplicity, but unfortunately it is also easy to 
obtain unreliable results. The observed changes in the 
metabolome should be biologically relevant, but because the 
metabolome is so sensitive to any environmental change; it is 
also easily perturbed by the experimental protocol. This is 
clearly an undesirable outcome. To address this issue, we 
described in detail our optimized protocols for the NMR 
analysis of bacterial metabolomes. We also highlighted com-
mon problems and potential sources of mistakes. We dis-
cussed the entire process that includes growing and harvest-
ing bacterial cells, extracting the metabolome, NMR data 
collection, processing and analysis, statistical analysis, me-
tabolite and network identification. The protocols described 
have been successfully applied to a number of systems biolo-
gy projects [5, 49, 50, 52, 104-106].  
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