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Proteomics is the study of the proteome, the entirety of 
proteins, their spatial and temporal expression patterns, 
their modi*cations, interactions, and of course their func-
tions. To elucidate the proteome of any higher eukaryote is 
currently a futile endeavor but subsets thereof can be investi-
gated. Mass spectrometry (MS) has become the tool of 
choice in proteomics [1] and is used to establish protein se-
quence, quantity, and modi*cation.  

6e output of any mass spectrometer is a list of mass to 
charge ratios (m/z) of the peptides in a sample. To derive 
further information additional stages of MS can be employed 
following a fragmentation of the peptide precursor for which 
many methods are available [2]. Tandem-MS (MS/MS, MS2) 
spectra contain a list of m/z values of the fragmented pep-

tide.  
6ere are basically two ways to assign a peptide sequence 

to an MS/MS spectrum from an unknown precursor. One 
method, termed database search, depends on the availability 
of a database of either sequences or reference tandem-MS 
spectra [3]. In contrast to that, de novo sequencing derives 
the sequence solely form the MS/MS spectrum [2]. For both 
database search and de novo sequencing many algorithms 
have been developed for computational analysis of MS2 spec-
tra.   

An abundance of di=erent mass spectrometers are now 
available, which can further be coupled with a large number 
of fragmentation methods. 6is leads to a large number of 
possible measurement methodologies. According to the ‘no 
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Abstract 

1. Introduction 

Proteomics is a quickly developing *eld. New and better mass spectrometers, the platform of choice in proteomics, are being introduced 
frequently. New algorithms for the analysis of mass spectrometric data and assignment of amino acid sequence to tandem mass spectra are 
also presented on a frequent basis. Unfortunately, the best application area for these algorithms cannot be established at the moment. Fur-
thermore, even the accuracy of the algorithms and their relative performance cannot be established. 6is is due to the lack of proper bench-
mark data. 6is letter *rst introduces the *eld of mass spectrometry-based proteomics and then de*nes the expectations of a well-designed 
benchmark dataset. 6ereaOer, the current situation is compared to this ideal. A call for the creation of a proper benchmark dataset is then 
placed and it is explained how measurement should be performed. Finally, the bene*ts for the research community are highlighted.  
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free lunch’ theorem, there is no one algorithm which is best 
for all instances of a problem [4,5] let alone for all problems 
posed by varying combinations of mass spectrometers and 
fragmentation methods. 6is seems to be a problem widely 
ignored in biological sciences where a tool if it works on a 
small number of instances of the general problem will be 
quickly adopted to solve even problems well beyond its do-
main [6]. In mass spectrometry this can be exempli*ed by 
the ubiquitous usage of Mascot [7] for many types of MS 
measurements while it was initially intended to be used for 
peptide mass *ngerprinting on matrix assisted laser desorp-
tion ionization - time of Right (MALDI-TOF) mass spec-
trometers. Admittedly, Mascot has since been extended to 
include fragmentation spectra but it is still targeted towards 
MALDI. It seems clear that any of the algorithms in database 
search or de novo sequencing perform di=erently on diverse 
data. 

Unfortunately, it is unclear which algorithm is best for 
which combination of mass spectrometer and fragmentation 
method. Some studies have investigated the performance of 
database search algorithms [3,8–10] and other studies the 
accuracy of de novo sequencing algorithms [11–13]. A mere 
review of the relevant publications is in this case not possible 
since all new algorithms are usually developed on di=erent 
mass spectrometric data sets. 6erefore, it is essential to em-
ploy the algorithms to be compared on the same dataset be-
fore comparing their performance.  

Only few benchmark datasets have been published in mass 
spectrometry-based proteomics which would allow such a 
comparison. Whether these can truly be called benchmark 
datasets will be investigated below (Section 3), but before 
that a general description of a proper benchmark dataset will 
be given (Section 2).   

In order to further the *eld of mass spectrometry and to 
develop useful algorithms, this letter is also a call to action. 
Anyone having access to synthetic peptides should partici-
pate in the development of a *rst benchmark dataset and 
provide a few hundred spectra per synthetic peptide so that a 
comprehensive benchmark dataset, based in ground truth, 
can be created.  

2. Benchmark Data 

In the widest sense of the word a benchmark is a standard-
ized performance test. In mass spectrometry-based prote-
omics a benchmark would thus measure the performance of 
algorithms to assign a sequence to an MS/MS spectrum. A 
benchmark dataset for mass spectrometry-based proteomics 
must thus consist of MS/MS spectra and their correct se-
quence annotation. Additionally, the mass spectrometer 
used, the fragmentation method, and the measurement set-
tings should be speci*ed.  

Aniba and colleagues de*ned six measures for well-
constructed benchmark datasets [14] which will be discussed 
in respect to mass spectrometry-based proteomics in the 
following.  

2.1. Relevance 

In mass spectrometry-based proteomics and in accordance 
with the ‘no free lunch’ theorem, a benchmark dataset could 
target a combination of a particular mass spectrometer and 
fragmentation method. 6is platform should be used to gen-
erate enough spectra from enough di=erent peptides so that 
the scope of the benchmark dataset can be ful*lled. In prac-
tice that means that if the benchmark dataset is targeted to 
test the performance of database search algorithms, it should 
consist of spectra similar to the ones that may be expected in 
experimental studies. For mass spectrometry this is diUcult 
since the peptide sequence seems to have a strong inRuence 
on fragmentation [15] and therefore the resulting spectrum. 
6erefore, measurements from all MS platforms are needed. 

2.2. Solvability 

6e benchmark dataset needs to be solvable. It should be 
neither too hard nor too easy for existing algorithms so that 
the benchmark can be used to di=erentiate performance 
among algorithms. In practice this disquali*es all existing 
benchmark datasets since all of them present the same 
“chicken or egg” problem: 6e MS/MS spectra are usually 
derived from a protein digest and are then assigned sequenc-
es using a database search algorithm. Unfortunately, in many 
cases algorithms do not agree on the sequence and thus the 
correctness of the sequence cannot be guaranteed. Since in 
existing datasets this is unaccounted for, they are not cor-
rectly solvable as they are not correct in themselves. Hence, 
current algorithms are presented with an insurmountable 
challenge. 

2.3. Scalability 

A benchmark dataset should present problems at various 
level of diUculty so that it can scale with the maturity of al-
gorithms. Current datasets might contain examples of di=er-
ent diUculty, but they are not properly annotated and thus 
not applicable for benchmarking. In mass spectrometry, 
datasets are exceedingly diUcult to solve and more simple 
datasets like repeated measurements of synthetic peptides 
are needed to present less perplexing problems and establish 
the accuracy of the foundation of more advanced methodol-
ogies. Later, problems like larger tolerances in the m/z meas-
urement, increasing noise level (i.e.: unexplained peaks from 
currently poorly understood fragmentation pathways such as 
sequence scrambling [16], and precursor ions of higher 
charge can be addressed. Peptides, which lead to fewer frag-
ments than expected, can present a diUcult challenge for 
algorithms following successes on simple benchmark da-
tasets. Even more diUculty can be created by measuring co-
eluting and co-fragmenting peptides, somewhat rare, but yet 
signi*cant problems. 

2.4. Accessibility 
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6e benchmark dataset needs to be accessible so that algo-
rithm developers or users can benchmark the tools they de-
velop or want to use. Mass spectrometric data may have an 
intrinsic problem since proper benchmark datasets will like-
ly have large *le sizes (several gigabytes) which may be diU-
cult to host and/or transfer. Nonetheless, several platforms 
for data sharing have been established (see Section 3). 

2.5. Independence 

Aniba and colleagues [14] make a very important point: 
“6e methods or approaches to be evaluated should not be 
used to construct the gold standard tests. Otherwise, the de-
velopers could be accused of ‘cheating’, i.e. designing the 
benchmark to suit the soOware”. 6is seems to be obvious 
but many new algorithms in mass spectrometry-based prote-
omics are published alongside with their own datasets. 6is 
is obviously due to the fact that no proper benchmark da-
taset is available and should not be used to accuse developers 
of cheating in this case. 

2.6. Evolution 

6e benchmark dataset needs to be modi*ed constantly to 
prevent researchers from optimizing their algorithms to 
solve it. New suitable datasets should thus be published fre-
quently to test the performance of existing algorithms. 6e 
need for scalability must be taken into account and subse-
quent datasets should be gradually more challenging. 

 
Currently, none of the available mass spectrometric da-

tasets adhere to more than one of these six requirements. 
Nonetheless, they are being used as benchmark datasets with 
all the negative consequences that entail such as low or un-
known accuracy of commonly used algorithms. 

3. Mass Spectral Data 

Although it is not mandatory for most journals publishing 
in the area of proteomics, some journals and funders make it 
mandatory that raw data be made publicly available [17]. 
Currently, not enough is being done to ensure that raw data 
is made available and a suitable incentive for researchers to 
comply is yet to be found [18]. Nonetheless, an abundance of 
mass spectrometric measurements have been made available 
in a number of public repositories. 6e major repositories, in 
no particular order, are Global Proteome Machine Database 
[19], PeptideAtlas [20], Proteomics IDEnti*cations Database 
[21], Proteome Commons’ Tranche (https://
proteomecommons.org/tranche/), and NCBI’s Peptidome 
[22]. Other smaller or more targeted collections are also 
available and have been reviewed in Mead and colleagues 
[23]  and RiXe and Eng [24].  

Proteomics repositories provide large amounts of raw 
mass spectrometric data which may also be annotated 
through database search and may be useful for research [17]. 

However, there is a hidden “chicken or egg” problem pre-
sent. MS/MS spectra are usually identi*ed using the database 
search engine of choice of the laboratory that made the 
measurements. And these assignments are then used to train 
new algorithms. An example for this is the benchmark da-
taset created by Keller and colleagues who used Sequest [25] 
to assign a sequence to the tandem-MS spectra [26]. Later it 
was shown that the data set contains additional possible as-
signments [27] which were not given in the initial publica-
tion. It is also likely that many assignments for the Keller et 
al. dataset are wrong since we were not able to reproduce 
them with other database search engines or de novo se-
quencing tools (data not shown). 6is leads to the serious 
problem that new algorithms are trained on a dataset with 
assignments of another algorithm. 6us all new trained algo-
rithms will likely duplicate errors done by the algorithm 
used to assign peptides to spectra during the creation of the 
dataset.  

6e *eld of mass spectrometry-based proteomics is large 
and interfaces with many instruments other than just mass 
spectrometers. 6is fact is mirrored in the approaches used 
to develop benchmark datasets. For example the Keller et al. 
dataset closely mirrors standard high throughput studies. 
Two more recent datasets do the same and although they are 
more elaborate still present the same “chicken or egg” prob-
lem. Wessels et al. present a very comprehensive dataset 
based on the Escherichia coli proteome with additional 
spiked in known protein digests as a real life challenge [28]. 
Beasley-Green and colleagues also chose a model organism 
(Saccharomyces cerevisiae) to design their dataset [29]. An-
other approach for designing benchmark datasets is based 
on simulation [30], but this approach, while o=ering a 
ground truth, is synthetic and should itself be benchmarked 
on real data. All mentioned datasets aim to benchmark the 
overall process and neglect the fact that each individual pro-
cess should be properly benchmarked before integration 
testing can be performed. 6erefore it is necessary to develop 
more targeted and well-designed benchmark datasets to 
prove the e=ectiveness of all modules of the overall mass 
spectrometry-based proteomics workRow. 

4. Call for Action 

As detailed above, there is no publicly available dataset 
which is solvable and thus at least two of the measures for 
well-constructed benchmark datasets are violated. It is the 
aim of this letter to engage the mass spectrometric commu-
nity in creating a compliant benchmark dataset.  

As current datasets are not solvable due to the “chicken or 
egg” problem, it is necessary to assure the assigned sequence 
by a di=erent means than any of the current database search 
or de novo sequencing algorithms. 6e simplest way that the 
sequence assignment can be guaranteed is by directly inject-
ing/spotting pure synthetic peptides. 6e resulting dataset 
will be solvable in theory and thus would enable true bench-
marking of current algorithms and would enable developers 
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to benchmark their new algorithms. 
6is letter urges anyone with access to synthetic peptides 

and mass spectrometers to measure them in the following 
way: 

1. Measure the synthetic peptide at high concentration 
(10-50 MS/MS spectra) 

2. Decrease the concentration (e.g.: lower the Row rate) 
and measure 10-50 MS/MS spectra 

3. Keep decreasing the concentration and measure 10-
50 MS/MS spectra  

4. Stop measuring when the signal is disappearing in the 
noise. 

Please submit the measurements for individual synthetic 
peptides in mzXML [31] or mzML [32,33] *le format to the 
author. A comprehensive dataset will be created and deposit-
ed in Proteomics IDEnti*cations Database [21] and NCBI’s 
Peptidome [22]. For this dataset an additional website will be 
created, crediting anyone submitting data, making available 
the data, and providing additional information about the 
dataset. A preliminary version of this website can be reached 
at http://msbenchmark.biolnk.com.  

6e dataset is relevant as MS/MS spectra are measured as 
they would be measured in current experimental procedures 
although the fact that usually mixtures are investigated is 
ignored. Additional problem due to liquid chromatography 
are also ignored. It is the aim to have undisturbed MS/MS 
measurements of known precursors and varying quality that 
is solvable in the domain of assigning sequence to MS/MS 
spectra. As di=erent spectral qualities are created it is to 
some degree scalable. All benchmark datasets created will be 
accessible but their relevance will decrease with time when 
more challenging datasets will be prepared. 6us the dataset 
will evolve and make optimization targeting the dataset only 
possible for older benchmarks. Finally, as this is a communi-
ty e=ort, the independence of the data is guaranteed. 6e 
resulting dataset thus adheres to all features of proper bench-
mark datasets.  

5. Community Bene*ts 

Some of the bene*ts that the mass spectrometric commu-
nity can gain from proper benchmark datasets are quite ob-
vious. For experimentalists it would be important to know 
which algorithms are best for their mass spectrometer and 
fragmentation method combination. 6ere is no silver bullet 
among algorithms so no one algorithm can perform best on 
all measurement platforms. Currently, it is not possible to 
compare algorithms but given a comparison the best suited 
computational analysis strategy can be pursued. 6is in turn 
leads to more accurate data entering public repositories, 
again bene*ting experimentalists even outside of the *eld of 
mass spectrometry-based proteomics. It has also been point-
ed out by Noble and MacCoss that a critical assessment for 
algorithms in the *eld is lacking [34] which further under-
lines the issue raised above. 

Clearly, developers of new database search or de novo se-

quencing algorithms will be enabled to *nd out for which 
platform their algorithm is best suited and how it compares 
to the performance of other algorithms on a publicly availa-
ble well annotated and solvable benchmark dataset presented 
in a standard format. 

6e benchmark dataset is not limited to the benchmarking 
of algorithms; it can also be used in novel ways that cannot 
be foreseen now. However, some additional bene*ts are for 
instance the ability to employ data mining on the benchmark 
dataset to learn general parameters about for example pep-
tide fragmentation [24]. A large number of synthetic pep-
tides measured with a variety of mass spectrometric plat-
forms will enable theoretical chemists to develop new frag-
mentation models. 6is in turn will enhance peptide identi*-
cation when these models are integrated into database search 
or de novo sequencing algorithms. 

Finally, the associated web page which credits laboratories, 
researchers, and their measurements may foster the ex-
change of measurements or samples within the resulting 
community (http://www.biolnk.com/msbenchmark). 

6. Concluding Remarks 

6is letter was meant to prove that there is a current lack 
of benchmark data for assigning sequence to MS/MS spectra. 
6is inRuences the speed of development of the *eld of mass 
spectrometry-based proteomics. Furthermore, it forces ex-
perimentalists to work with computational analysis tools of 
unknown accuracy. 6e bene*ts of making benchmark data 
available have been brieRy mentioned. It will help increase 
the accuracy of sequence assignments and in turn the accu-
racy of conclusions from experimental data in literature and 
in public databases. 

6is letter is a call for the submission of MS/MS measure-
ments of synthetic peptides and intends to create an initia-
tive to develop a *rst proper benchmark for the *eld of mass 
spectrometry-based proteomics.  
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