JIOMICS | VOL 2 | ISSUE 2 | DECEMBER 2012 | 80-93

¥

Journal of Integrated Omics

ORIGINAL ARTICLE | DOTI: 10.5584/jiomics.v2i2.109

]OURNAL OF INTEGRATED OMICS
A METHODOLOGICAL JOURNAL
HTTP:/ /WWW.JIOMICS.COM

A robust permutation test for quantitative SILAC proteomics experiments

Hien D. Nguyen'?, Ian A. Wood?, Michelle M. Hill*'.

'The University of Queensland Diamantina Institute, The University of Queensland, QLD 4102 Australia.>School of Mathematics and Phys-

ics, University of Queensland, St. Lucia, QLD 4072 Australia.

Received: 06 September 2012 Accepted: 02 October 2012 Available Online: 14 December 2012

ABSTRACT

Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) along with other relative quantitation methods in proteomics have be-
come important tools in the analysis of cellular and subcelluar functions. Although numerous experimental applications of SILAC have been
developed, there is no consensus on the use of statistical procedures to analyze the resulting experimental data. SILAC experiments output
relative abundance ratios for proteins to quantify differences in cell populations. These ratios have traditionally been analyzed with fold-
change methods and hypothesis testing procedures under Gaussian distribution assumptions.

We find that the normality assumption is invalid and can lead to inaccurate quantitation of the significance of differences between cell
populations. As a solution, a permutation based hypothesis test as an alternative for assessing significance is introduced. We develop a distri-
bution-free permutation testing methods for assessing various SILAC experiments. These tests generate p-values which can be easily inter-
preted and if necessary, the false discovery rate of these p-values can be easily controlled. To compare the permutation test against competing
methodology, we used a set of simulations based upon a theoretical model of SILAC ratio data.

Through the simulation studies, we find that the permutation test is generally superior to the competing hypothesis tests across the range
of simulation scenarios. We also find that the permutation test is typically more powerful and accurate than the competing methods at the
five percent level of significance and averaged over the spectrum of significance levels. Because of the broad superiority of the permutation
test and the ease of implementation, we propose the use of the permutation test as a standard measure of protein significance in SILAC ex-

periments.

Keywords: SILAC; quantitative proteomics; robust statistics; permutation test; Gaussian mixture model.

1. Introduction

Mass spectrometry-based proteomics methods have be-
come widely used and highly successful tools for the large-
scale study of molecular and cellular biology in recent years.
Since mass spectrometry analysis for individual samples are
performed sequentially, quantitative comparisons are not
inherent in these experiments. Over the past decade, several
labeling methodologies have been developed to enable quan-
titative proteomics analysis using multiplex mass spectrome-
try. The general approach is to label specific amino acids of
different samples with different mass ‘tags’, allowing the
samples to be mixed for the mass spectrometry analysis,
providing relative quantitation in terms of a ratio between
the samples. One method popular with cell biologists was

introduced by the laboratory of Matthias Mann in 2002 [1],
termed Stable Isotope Labeling by Amino Acids in Cell Cul-
ture (SILAC), and involves the incorporation of isotopic
amino acids as the cells produce new proteins during their
normal growth. Since proteins are labelled during normal
cell metabolism, rather than post-preparation of the proteins
of interest, as is used in other quantitative proteomics strate-
gies, SILAC offers the potential to account for variations
during protein separation, and is particularly suited for sub-
cellular proteomes [2-4] and time-resolved proteomics [2,5].
Although originally developed for cultured mammalian cells,
SILAC has now been applied to other species and organisms,
including bacteria [6], fly [7,8], plant [9] and yeast [10]. In
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addition, the development of SUPER-SILAC methodology
has enabled quantitative analysis with non-metabolic sam-
ples, such as archival tissue specimen and plasma [11]. A
thorough description of the SILAC method can be found in
[12].

In a typical two-plex SILAC experiment, samples are la-
belled in with ‘light’ and ‘heavy’ isotopes by feeding the cell
or organism with amino acids containing the required iso-
topes. Lysates are prepared and then combined based on
equal protein content. The target cellular or subcellular pro-
teome are isolated, digested with trypsin, and the peptides
are analyzed by tandem mass spectrometry (MS/MS) follow-
ing one or more separation steps, generally by liquid chro-
matography (LC). Because of the predictability of the mass
shift between the peptides coming from the “light” and
“heavy” populations, it is possible to distinguish “heavy” and
“light” peptide from the survey mass spectra (MS1), and
hence calculate a ratio of their relative intensities. A ratio
equal to one would indicate that there are no differences in
the abundance of the peptide between the two populations
whereas a ratio not equal to one would indicate an up or
down-regulation of the peptide.

Furthermore, fragmentation of the parent ion (MS/MS
spectra) allows the matching of the quantified peptides to a
protein sequence, and the inference of a protein’s abundance
change by averaging over the matched peptides. Protein in-
ference from MS/MS data is generally performed by special-
ist software, both commercial and open source. Comprehen-
sive comparisons of these algorithms have recently been per-
formed [13,14]. The current work will focus on the statistical
evaluation of such quantitative data.

In a typical SILAC experiment, there may be thousands of
protein ratios measured [3,8,12]. Because of the large num-
ber of protein ratios quantified, and the existence of errors in
the computational and experimental processes, it is highly
unlikely that all proteins with ratios different to one are actu-
ally differently regulated between the two populations. It is
therefore necessary to define a method by which proteins
can be considered to be differently regulated or not.

A common approach to assessing protein ratios is through
the use of a “fold-change” threshold applied over all protein
ratios [1,15]. Under a 1.5 threshold scheme as suggested in
[15], a protein is considered differently abundant between
the whole populations if the protein ratio is either greater
than 1.5 or less than the inverse of 1.5 (2/3). Depending on
the experiment, there have been reports of uses of thresholds
anywhere between 1.3 [12] to 6 [1].

Because of the differences in variability between experi-
ments, an application of a certain threshold to one experi-
ment may result in a high proportion of false positives
whereas the same threshold applied to a different experiment
might yield a high proportion of false negatives instead. The
combination of variability in results, combined with a need
for experimenter specification makes the threshold method
less useful for high throughput applications where there is a
greater priority to mitigate the proportion of false discover-

ies in an experiment [16,17].

For candidate proteins that will be further validated
through orthogonal approaches, such as western blotting,
strictly controlling the false discovery rate may not be cru-
cial. However, one of the advantages of omics analyses such
as proteomics is the ability to infer pathways and networks
from the high throughput data [18,19]. For these workflows,
thorough statistical hypothesis testing is crucial in ensuring
the true list of altered proteins is carried forward for the net-
work or pathways analyses [20]. There have been a wide vari-
ety of hypothesis testing methodologies applied to the assess-
ment of abundance by SILAC ratios such as the one sample t
-test [21,22], z-test [23,24], robust z-test (significance A)
[17,25,26] and Wilcoxon signed-rank test [22]. The reason
for the numerous approaches to hypothesis testing is because
of the disagreement about what statistical model and as-
sumption to use for the calculation of p-values. Methods
such as the t-test and z-test are based on an assumption that
either the protein ratio distribution or peptide ratio is nor-
mally distributed.

In this study, we examined the distribution of two-plex
SILAC datasets, and demonstrate the assumption violations
and deficiencies of the t-test, z-test, robust z-test and Wil-
coxon signed-rank test when used with SILAC data. We then
propose a new permutation test which does not rely on dis-
tributional assumption and demonstrate its utility and supe-
riority over the current methodologies in a simulation study.

2. Material and Methods

Peptide ratios from a SILAC quantitative proteomics ex-
periment take on numbers in the theoretical, noninclusive
range of zero to infinity represented by r; where i is an enu-
meration of the ratios, taking values one to n. Without loss
of generality, we will always consider the peptide ratios as
being in the form of heavy over light. The number n denotes
the total number of peptide ratios obtained in the experi-
ment. After protein mapping, it is possible to assign each
peptide ratio a protein identification number p; between one
and m where m is the total number of proteins identifiable
by the peptides quantitated in the experiment. The number
p:is an enumeration of the identifiable proteins in some or-
der such as by the protein’s accession number. Together the
values r; and p; allow us to identify each of the peptide ratios
and to which protein they are matched.

Although the distribution of the peptide ratios {r}, is
bounded to the left by zero, it has often been observed that
the distribution of the logarithm of r; I=log (), usually takes
on a bell-shaped curve [24,27,28]. Under a 1:1 mix between
heavy and light cells sampled from the same populations, we
would expect the distribution to be centered at zero because
the logarithm of one is zero and the abundances of proteins
between the two populations should theoretically be the
same [27]. Because of these properties, it is often more con-
venient and meaningful to work with the peptide log-ratios /;
instead of r;.
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2.1. Experimental Dataset

For the analysis of the distributions of peptide ratios, we
utilise the data set from a published subcellular SILAC study
comparing four fractions from prostate cancer PC-3 cells
expressing the protein Polymerase I and Transcript Release
Factor (PTRF) tagged with Green Fluorescent Protein
(GFP), or GFP alone as control [3].

2.2. One sample t-tests

The one sample t-test for each protein j, is evaluated by
first evaluating the mean over all peptide log-ratios matched
to the protein numbered j: Ly =3,k /  where nj=#{l:| pi= j}
is the number of peptides matched to protein j. The protein
log-ratios L; are then divided by the standard error term
sj/nj where Sj:\/z{klpzj}(Lj—1)2/(71]'—1) is the standard
deviation of the peptide log-ratio subsample {I | p;= j} which
yields the test statistic

__ L
n= silIn;’

Under the null hypothesis that there is no change in abun-
dance of the protein between the two populations and under
the assumption that the subsample {} | pi=j} is normal, the
p-value of T;can be found using the Student-t distribution
[29]. It must also be noted that the t-test can only be applied
to proteins that are quantitated by two or more peptides be-
cause of the necessity to estimate the standard deviation of
the log-ratio subsamples.

2.3. Robust z-tests

To conduct a robust z-test, each of the proteins j are quan-
titated by taking the median over all peptide log-ratios
matched to the protein numbered j: M;= Median({l: | pi = j}).
An overall median of the protein log-ratios sample :
{M;},:Bo alongside with the 15.87 and 84.13 percentiles:
Pisg; and Py, 3 can also be calculated. Assuming that the
population of protein log-ratios has a Gaussian distribution,
the differences Ps, -Ppsg; and Py, - Py, are both approxi-
mately equal to one standard deviation, and P, is equal to
the mean. Using these facts, the z-statistic

77 (Ba1s —Plss7) / 2
has a standard Gaussian distribution and can be used to
evaluate the p-value of each of the proteins.

As an alternative, [25] specifies the test statistic
M;—Pso
Ba1s —Po
for testing the null hypothesis of no difference in abundance
versus the alternative hypothesis of greater abundance in the
heavy population compared to the light population.

Zj=

2.4. Wilcoxon signed-rank tests

Another robust hypothesis testing method is the Wilcoxon

signed-rank test [30]. For proteins, the Wilcoxon signed-
rank test is used to test the hypothesis that the abundance is
the same between the two cell populations against the hy-
pothesis that the abundance being different. The p-value of
the test is evaluated using the signed ranked peptide log-
ratio subsample {I | pi=j} for each protein j through the
Wilcoxon rank distribution or a normal approximation.

2.5. Permutation tests

We now present a permutation test procedure formulated
in the tradition of [31] whereby we resample with replace-
ment from the empirical data in order to evaluate the signifi-
cance of a test statistic. In the context of bioinformatics, per-
mutation testing has been applied to microarray gene ex-
pression studies [32,33], gene ontology and network analyses
[34,35], and in proteomics specifically, permutation testing
has been applied to false discovery rate control [36,37] and
to biomarker discovery [38,39]. In the case of a SILAC pro-
tein expression experiment, we want to know the signifi-
cance of the difference in the abundance of a protein be-
tween the heavy and light cell populations. The difference in
abundance for a protein j can be measured as some function
of the peptide log-ratio subsample {i|pi=j}such as the
mean L; or the median M;. As an example, we will only con-
sider L; in following description of the method.

Under the assumption that the true population distribu-
tion of peptide log-ratios for the experiment resembles the
sample distribution of the peptide log-ratios [40], we can
calculate conservative estimates for the p-values of each pro-
tein j using the algorithm in (Figure 1) [41,42] for the null
hypothesis that the protein is differently regulated between
the two cell populations. Although there are no direct per-
mutation of the protein labels p;, the random sampling with-
out replacement serves the practical purpose of permuting
the class labels by obtaining n; peptide log-ratios to label as
protein j. The algorithm allows for working with data that
may or may not need normalization such as 1:1 mixes and
other mixing proportions respectively as well as allowing the
replacement of the mean protein log-ratio L; for any other
test statistic of interest such as the median M,.

It is important to note that, unlike the other hypothesis
testing procedures, a p-valuej obtained from (Figure 1) is
an estimate of the true p-value for protein j with respect to
the null hypothesis. In the case of a protein with n; of one,
the estimate p-valuej is the same each time the algorithm is
run since the test computes the exact probability of obtain-
ing the test statistic of L; or more extreme under the null
hypothesis in a similar fashion to Fisher’s exact test [43]. In
the cases where the proteins have subsample sizes n; greater
than one, we cannot calculate the exact p-value since it
would require the exhaustive calculation of test statistics for
all n!/((n—n;)!n!) possible subsamples from {I}_, of size .
This number grows rapidly and can become computationally
infeasible for the sizes of most SILAC experiments. Instead
of exhaustive computations over all possible subsamples, we
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1. Set S as the sample of all peptide log-ratios { 1 }"

i=

from the experiment if the data does not require normalization.
1

a. If the data requires normalization, set S as the normalized sample {l; = M}ll or {li —l_}’ll where M = median({li}jzl)

= w L
and /= zi:]—‘ to normalize by the median or the mean respectively.
n

2. For protein j in the number of proteins one to m :

a. Calculate the number of peptides n, = #{li P, =]} in the subsmaple of protein j.

i

b. Calculate the protein log-ratio L; = Z{Zl I
J

c. Ifn=1:

i. Estimate the p-value of protein j by evaluating p—Vaiue] =

and I{|Lj|>|lj|}=0 if |Lj|>|lj| is false.
d.Ifn>1:

i. For b from one to B:

for protein j.

Zo e[

1 where I{‘Lj‘>‘lj|}=1 if |Lj|>|lj| is true

A. Randomly sample without replacement #; numbers between one and 7 to obtain the set {ka}:j:l where k, is a number

between one and n.

B. For the random peptide log-ratio subsample So ={l }Z; , using the random sample {ka}:’:l e

x|
C. Compute the protein log-ratio of the random subsample by evaluating L Y= ;i‘

ii. Estimate the p-value by evaluating p-value; =

f|L)>|L =0 i is |L|>|L") false.

B I
Z—J{M where I{|Lj|>|L‘h|}=1 if |L}‘|>|L'h| is true and

B+1

Figure 1. Permutation testing p-value. Algorithm for assessing the significance of protein log-ratios in SILAC expression experiments.

sample B of these subsamples with replacement and estimate
the p-value based on these subsample test statistics instead.
It is known that with increasing values of B the estimates
p-value; approach their true values [41] and so B can be set
based on obtaining a level of accuracy for p-valuej or based
on computational limitations.

2.6. Simulation setup

Assuming that the distribution of the peptide log-ratio
sample {I}"_ is bell-shaped and has a mean of zero for a 1:1
mix, we can model the distribution of the peptide log-ratios
of a quantitative proteomics experiment as a mixture of
three bell-shaped distribution functions [44]. The three dis-
tributions must consist of a central, zero mean component
representing the distribution of peptides which have no
meaningful changes in abundance, a distribution with a neg-
ative mean which represents negatively changed peptides,
and a distribution with positive mean which represents posi-

tively changed peptides. In the simplest case, a Gaussian dis-
tribution can be used to model each of the bell-shaped com-
ponents of the log-ratio data [45]. A hypothetical protein log
-ratio distribution under this model can be seen in (Figure
2).

The density of log-ratios composes a mixture of three
Gaussian distribution functions can be expressed as

(D =nmfo (b po,02) +72fo (I3 112,03 ) + 7 fo (b 1, 03)

whereby the parameters m;, 7, and 7, each taking values
between zero and one, denotes the mixing proportion of
each of three components respectively, and  7fs(k e, 07)
is the Gaussian density of the form

1 ift=me
e 0F)=——=¢"2 5
fG(la/Jg g) \/FO‘} 2( g)
where y; and o} are the mean and variance of compo-
nent g respectively, and g is equal to one, two or three.

Of course the underlying distribution which models every
experiment is different and will result in a different set of
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Hypothetical distribution of peptide log-ratios
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Figure 2. Hypothetical distribution of peptide log-ratios using a
mixture of three Gaussian distributions. The black curve indicates
the distribution of all peptide log-ratios in a protein expression
experiment and the histogram is a sample of 10000 log-ratios from
this distribution. The red curve indicates the distribution of all
peptides that were unchanged in abundance, the blue curve
indicates the distribution of negatively changed peptides, and the
green curve indicates distribution of positively changed peptides.
The black curve can be seen as the sum of the red, blue and green
curves.

parameters for each of the mixture distribution components.
We concentrate on a family of mixture distributions which
we believe are representative of the data from many protein
expression experiments. We fix the unchanged peptides dis-
tribution as a Gaussian distribution with a mean of zero and
standard deviation of one. The positive and negative distri-
butions are set to be symmetrical whereby the positive distri-
bution has a mean of y > 0 and the negative distribution has
a mean of -y. The variance and mixing proportions of the
negative and positive distributions are equal and set to be 02
and 7 respectively. Therefore, we can write this family of
peptide log-ratio distributions as

F()=(1-27) fe(£0,0)+ 7 fo (,—p 02) + 7 fa(L,o2)

whereby we can interpret 27 as the proportion of peptides
that have changed in abundance in the experiment, -y as the
average negative change in the log-ratio and y as the average
positive change in the log-ratio for those peptides that have
displayed a change in expression. Similar three component
mixture models have been used in previous studies to model
the unchanged, up-regulated and down-regulated SILAC log
-ratios [44,46,47].

In order to cover as broad a range of distributions from
this family as possible, we have chosen to simulate from the
cases where y is equal to 0.5, 1 or 2, 02 is equal to 0.25, 1 or 4,
and 27 is equal to 0.1, 0.2 or 0.3. We believe these cases to be
representative of the variety of relative variability and chang-
es as well as the number of peptides that are differently ex-
pressed in an experiment. Simulating data from the experi-
ment requires us to firstly determine the number of identi-
fied proteins m which we want to consider. For each of the
m proteins j, we then randomly determine whether or not it is
unchanged, negatively changed or positively changed with
probabilities 1-271, 7 and 7 respectively. Once, we determine

behavior of the protein, we generate n; peptide log-ratios for
the protein from a Gaussian distribution with mean and
variance corresponding to the behavior. The value of #; for
each protein comes from the geometric density function

fn)=(-¢)"¢

where ¢ is a parameter which can take values between zero
and one. We can justify the use of the geometric distribution
because the minimum X?-test for goodness-of-fit [48] indi-
cates that the negative binomial distribution is appropriate
for modeling the subsample sizes in the four data sets from
[3] (with p-values of 1 in all cases) and the geometric distri-
bution can be seen as a simple case of the negative binomial
distribution. The full algorithm can be seen in (Figure 3). We
choose to use the values m = 500 and ¢ = 0.05 in all of our
simulation scenarios since this results in an average total of
10000 peptide ratios which approximately corresponds to
the values observed in the [3] data sets. Each set of parame-
ters were simulated 10 times and some examples of simulat-
ed data can be seen in (Figure 4).

2.7.FDR, TPR and ACC

For each of the sets simulation parameters, we can evalu-
ate the average estimated false discovery rate (FDR), true
positive rate (TPR) and accuracy rate (ACC) [49] across the
10 repetitions. The FDR is a measure of the number of pro-
teins incorrectly determined as changed, as a proportion of
the number of proteins considered changed. The TPR is a
measure of the number of changed proteins found as a pro-
portion of the number of truly changed proteins, and the
ACC is the total number of correctly classified proteins, both
changed and unchanged as a proportion of the total number
of proteins tested. All three values take on numbers from
zero to one whereby a lower number is desirable for the FDR
and a higher value indicates better performance for the TPR
and ACC.

We can represent the true class labels of each of the m
proteins in a simulated data set mathematically as {c,-}].";l
where ¢; is zero if the protein is unchanged and one if the
protein is changed. Similarly, we can represent the result of
the hypothesis tests as {¢;}", where ¢; is zero if the p-value is
greater or equal to 0.05 and one if the p-value is less than
0.05. Using this notation, the estimated FDR, TPR and ACC
can be expressed as

FDR= 1—72”"=T}I{Cj =tj}, PR= 72““’?”1{@ =tj}, ACC= odlo=t}
#{jlti=1 #{jlci=1} m

respectively where I{c; = t} =1 if ¢;=¢; is true and I{c;=t} =0 if
¢;=t; is false. We can denote the average estimated FDR, TPR
and ACC as FDR, TPR and ACC respectively where they
are each evaluated by averaging over the 10 repetitions of
each set of simulations. These average measures allow us to
comment on the performance of each of the hypothesis tests
across the 27 different simulation scenarios when applied
using the & = 0.05 level of significance.
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1. Set the proportion of changed proteins 27.

2. Set the mean deviation in the expression of peptide log-ratios .

3. Set the variance of the changed log-ratio distributions o2 .

4. Set the parameter ¢ for generating the size of each protein subsample.

5. Set the number of proteins to simulate .

6. For protein j in the set of proteins from one to m :

a. Randomly generate a protein subsample of size 7; from the geometric distribution f (1;) = (1-¢)® ¢.

b. Randomly Draw R from a uniform distribution in the interval of zero and one.

c.If0O<R<1-2m:

i. Randomly generate n; peptide log-ratios from the density fg (I; 0,1).

d.If1-2n< R<1-7:

i. Randomly generate ; peptide log-ratios from the density fg (/5 - #,0%).

eIf1-m<R<1:

i. Randomly generate n; peptide log-ratios from the density fg (15 y,02).

Figure 3. Peptide log-ratio simulation algorithm. Algorithm for simulating peptide log-ratio data based upon theoretical Gaussian mixture

models.

2.8. AUC statistic

The area under the curve (AUC) measurement of the re-
ceiver operating characteristic (ROC) curve [50] was also
calculated for each simulation scenario. The ROC curve plots
the performance of a method in terms of the estimated false
positive rate (FPR) and the estimated true positive rate
achieved for each level of « used. The FPR can be interpreted
as the number of truly unchanged proteins incorrectly classi-
fied as being changed as a proportion of the number of truly
unchanged proteins. Like the other measurements, the FPR
can take values between zero and one whereby lower values
are desirable.

While the FPR and TPR are estimations of the probability
of a type-I error and the power at every threshold level re-
spectively, the AUC under the ROC curve is an average
measure of performance of a method across all possible
thresholds for a data set. Hence the AUC measurement has
been widely adopted as a summary of performance in ma-
chine learning and proteomics applications [49,51-53].

We calculate the AUC for each method on each repetition
of each set of simulation parameters. The average AUC
measurement AUC for each testing method is calculated by
averaging over the 10 repetitions of each simulation scenar-
io. An example of ROC curves for an instance of the simulat-
ed data can be seen in (Figure 5). The average AUC, com-
bined with the FDR, TPR and ACC can give an indication
of the relative performance of the permutation test against
the competing testing methods.

3. Results

The normality assumption is necessary in guaranteeing
accurate inferential results in many hypothesis tests. For this
reason, the bell-shape of the distribution of the peptide log-
ratios {1};_, makes the assumption of a Gaussian distribution
very tempting. It has been noted in the past that a Gaussian
distribution is often not a good fit to actual peptide log-ratio
data. We investigated this through observing histograms of
the peptide-log ratios from our four subcellular fractions
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Figure 4. Histograms of simulated peptide log-ratios under different scenarios. Each of the histograms are an example of the simulated data of
the peptide log-ratios from a protein expression experiment. The set of simulation parameters in each case are A: 27 = 0.1, g = 0.5 and 0* =
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can alter the peak, spread and shape of the tails of the distributions in each case.
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black curve and the red line indicate the ROC curve for random guessing where TPR=FPR. The methods (with the AUC achieved over the
data set) are A: permutation test (0.9252), B: z-test (0.9220), C: robust z-test (0.8600), D: t-test (0.7857) and E: Wilcoxon signed-rank test
(0.7621).
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data sets (Figure 6).
3.1. One-sample t-tests

Although the histograms are not Gaussian, traditional
insight about the t-test often suggest that if the sample distri-
bution does not deviate too greatly from the Gaussian distri-
bution, a t-test may still be robust enough for use [56,57]. It
has been shown that the t-test may still be applied when the
data comes from a symmetric distribution which can often
be the case when observing peptide log-ratio distributions
over all proteins [58].

When we observe the largest peptide log-ratio subsamples
from the four subcellular quantitations from [3] (Figure 7),
we notice that not only is there strong deviations from sym-
metry in most cases but also multimodalism which severely
violates the normality assumption. These results obtained
from the largest subsamples from each of the four quantita-
tions implies to us that it is difficult to assume normality for
the peptide log-ratio populations for each of the quantitated
proteins and thus invalidates the use of the one-sample t-
test.

3.2. One-sample z-tests and robust z-tests
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There is a similar problem with violations of the normality
assumption in the use of the z-test whereby a Gaussian dis-
tribution is fitted to the protein log-ratio sample {L;}, and
the tails of the fitted distribution are used to calculate the p-
value of each protein [60]. We can see the deviations from
normality in the protein log-ratio histograms of the four
subcellular quantitations from [3] (Figure 8). Because of the
lack of fit of the Gaussian distribution to the protein log-
ratio samples, the p-values calculated using fitted a curve will
not accurately represent the true significance of each of the
proteins.

There have been propositions for the use of more robust
means of hypothesis testing. One such method is the robust
z-test which uses the outlier-insensitive properties of the
percentiles of a distribution rather than the mean and stand-
ard deviation which are known to be strongly influenced by
extreme observations.

Under the assumption of Gaussian protein log-ratios, this
z-statistic also has a standard Gaussian distribution and the
p-value for each protein can be calculated by evaluating the
tail probability P (z > Z;) where z is a standard Gaussian ran-
dom variable. However, the method does not address the
problem of deviations from normality in protein log-ratio
distributions.
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Figure 6. Histograms and fitted Gaussian distributions to peptide log-ratios of subcellular quantitations. The experimental data comes from the
four subcellular proteome quantitations for the effect of Polymerase I and Transcript Release Factor (PTRF) expression in human prostate
carcinoma PC-3 cells. The PTRF expressing cells were labeled with heavy amino acids and the cells without PTRF expression were labeled
with light amino acids. The four subcellular fractionals (with number of peptides quantitated in brackets) were A: Detergent-Resistant
Membrane (7338), B: Total membrane P100 fraction as described in [54] (10271), C: Prostasome (8682) and D: Secretome (9653). The
Lilliefors test for normality p-values [55] for each sample was less than 2.2 x 10-'¢ indicating that the four sets of peptide log-ratios are

severely non-Gaussian.
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Figure 7. Histograms and fitted Gaussian distributions to peptide log-ratios of most common proteins. We plot the histograms of the peptide log-
ratio subsample for the most commonly quantitated proteins of each of the quantitated fractions from [3]. The four most common proteins
(with the number of peptides in the subsample in brackets) are A: Plectin-1 (929), B: Nucleophosmin (296), C: Thrombospondin-1 (802) and
D: Thrombospondin-1 (577) coming from the DRM, P100, Prostasome and Secretome fractions respectively. The p-values for the D’Agostino
test for skewness [59] for each subsample is A: less than 2.2 x 10-'6, B: 0.2656, C: less than 2.2 x 10-'*and D: 0.01957.

In order to assess the effects of violations of the normality
assumption, we calculate the relative error between the true
right-tail probability of a log-ratio of 3 in various Student-t
distributions as compared to the right-tail probability calcu-
lated using the robust z-test as a ratio of the true probability.
It is known that the Student-t distributions have heavier tails
than the Gaussian distribution and asymptotically approach-
es the Gaussian distribution as the number of degrees of
freedom approaches infinity [29]. We can see from (Figure
9) that the robust z-test would tend to underestimate the p-
value of a protein log-ratio of 3 when the distribution of pro-
tein log-ratios has heavier than Gaussian tails. Because of the
discrepancies in the p-values, the robust z-test would tend to
have a higher proportion of false positives when the protein
log-ratios come from distribution with heavier than Gaussi-
an tails.

3.3. Wilcoxon signed-rank tests

The Wilcoxon test is a nonparametric hypothesis testing
procedure that does not depend on the distribution of the
underlying population. The procedure is therefore robust to
deviations from normality and can therefore be implement-
ed to sample data regardless of the underlying population
distribution. The cost to this robustness is that the test lacks
the power to detect large deviations from the null hypothesis
in small samples.

To illustrate the lack of power of the test, suppose that we

only observe positive peptide log-ratios in the subsample
{I;| p;=j Hor a protein j. The p-value of the Wilcoxon signed
rank test at various number of peptides #{I;| p;=j} can be
seen in (Figure 10) showing that a protein needs to be quan-
titated by at least six peptides in order to be deemed signifi-
cantly different within the two cell populations at the five
percent level. Proteins which are quantitated only by positive
peptide log-ratios are a best case scenario and thus, for pro-
teins that are quantitated by both positive and negative pep-
tide log-ratios, the number of peptides needed for a signifi-
cant result would be greater than six. The lack of power
makes it impossible to find significant differences for rare
proteins between the two cell populations and therefore di-
minishes the usefulness of the procedure.

3.4. Permutation tests

The permutation test proposed here is both distribution
free and more powerful than the Wilcoxon test in small sam-
ples. The lack of distributional assumptions allows the per-
mutation tests to be applicable to SILAC log-ratio data
which as we have shown to not meet the required assump-
tions for conventional hypothesis tests. Additionally, the
permutation test appears to be better suited than the other
procedures, especially for assessing the significance of pro-
teins that are quantitated by small numbers of peptides.

We now report on the simulation study conducted to as-
sess the performance of the permutation test against the t-
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Figure 8. Histograms and fitted Gaussian distributions to protein log-ratios of subcellular quantitations. The four subcellular fractionals (with
number of protein quantitated in brackets) were A: Detergent-Resistant Membrane (504), B: P100 (691), C: Prostasome (489) and D:
Secretome (484). The Lilliefors test for normality p-values for each sample was less than 2.2 x 10-'°shows that the protein log-ratio samples

are significantly non-Gaussian in distribution.

test, z-test, robust z-test and Wilcoxon signed-rank test
across the 27 simulation scenarios. The performance for each
method in each scenario is measured by the FDR, TPR, ACC
and AUC averaged over the 10 repetitions.

3.5. Evaluating competing methodologies

We firstly assess the performance of each of the methods
as applied with the significance level of & = 0.05. Since each
of the hypothesis testing methods results in a p-value for
each protein, we can use the rule that if the p-value is less
than 0.05, we consider that the protein is differently abun-
dant between our two samples and if the p-value is greater or
equal to 0.05 then we consider that the protein is unchanged.
For the t-test, a p-value of 1 is given to any protein that it
cannot quantitate since that protein would generally under-
go no further assessment and therefore is vacuously deemed
unchanged. The number of permutations B is set to 10000
which have been shown to result in sufficiently accurate p-
values when tested against a Gaussian null distribution. Re-
sults of the FDR, TPR, ACC and AUC across the 27 different
simulation scenarios can be found respectively in (Table S1),
(Table S2), (Table S3) and (Table S4) in Supplementary Sec-
tion 1.

To facilitate comparison, we also ranked the five methods
for each of the set of parameters, where one represents the
method that performed the worst in a scenario and five rep-
resents the best method. Ties are each given fractional ranks
equal to the average of the tied ranks. The ranked results for

Relative error of the p-value for a log-ratio of 3

0.6 0.7 0.8

Relative error
0.5

0.4

0.3

Degrees of freedom

Figure 9. Relative errors between the true p-value and robust z-
test p-value for a log-ratio of 3. The relative error at is calculated as
(P;- P,)/P, where P, = P(t < (3-Ps)/(Ps13- Pso)), P, = P(z < (3-Pso)/
(Pgs13- Psp)), t is a Student-t random variable with degree of
freedom v, z, is a standard Gaussian random variable and the
percentiles come from a Student-t distribution with degrees of
freedom v. The relative error for degrees of freedom of one to 100
are graphed showing that the true p-value is always greater than
those calculated using the robust z-test. The relative error is
decreasing with increasing degrees of freedom because the shapes
of the Student-t distribution approaches normality as the degrees
of freedom approaches infinity.
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Figure 10. p-values of a Wilcoxon signed-rank test for various
numbers of positive sample observations. The graph shows the p-
values of a Wilcoxon signed-rank test for various sized samples of
positive values. The red line indicates the five percent level of
significance and indicates that we need at least six observations in
order to obtain a p-value less than the significance level. The graph
also shows that the p-value is decreasing with respects to larger
numbers of observations, indicating that the more positive peptide
log-ratios observed, the greater the probability that there is a
difference between the protein abundances of the heavy and light
cell populations.

the FDR, TPR and ACC and AUC across the 27 different
simulation scenarios can be found respectively in (Table S5),
(Table S6), (Table S7) and (Table S8) in Supplementary Sec-
tion 1.

Using the rankings, we can calculate the total of the ranks
over each of the measurements. These totals give us an indi-
cation of the relative performance for each of the testing
procedures over all simulation scenarios. The total ranks for
each of the six testing methods over the four measurements
can be found in (Table 1).

From the total ranks results we can see that the permuta-
tion test performed the best in terms of FDR and ACC
, second best in terms of AUC , and third best in terms of.
These results are subjected to variability due to the random-

ized process of the simulation study. It is therefore also in-
teresting to observe the statistical significance of each of the
difference between the ranks of the permutation test and
those of the competing methods. The paired-sign test [61] is
applied to the rank data for each of the four measurements
in order to perform this assessment. The p-values for each of
the tests can be found in (Table 2).

The results of the hypothesis tests suggest that at the 0.05
level, there is no significant difference between the ranks of
the permutation test and the z-test over both the TPR
and AUC. Therefore, there is not enough evidence to sug-
gest that the z-test outperforms the permutation test in those
two measurements.

4. Discussion

The tabulated results show that the permutation test can
be seen as being the best performing method or tied for best
performing method over the average FDR, ACC and AUC
measurements. This indicates that over a variety of possible
simulation scenarios, the permutation test can be seen to
either equal or outperform the z-test, robust z-test, t-test and
Wilcoxon signed-rank test. The performance over the FDR
and ACC indicates that the permutation test makes the few-
est false identification of changed proteins as well as the few-
est mislabeling of proteins across the different simulation
parameter sets when applying a & = 0.05 threshold. The re-
sult from the AUC shows that the permutation test is also
the best test to use with any arbitrary threshold as well, indi-
cating that it is not only optimal at the 0.05 level.

The permutation test is only significantly bettered by the
robust z-test in terms of ranks of TPR. Observing (Table 2),
we note that although the permutation test is often beaten by
the robust z-test, the absolute value of the TPR in many sce-
narios are very small. We also note that the robust z-test
performs the worst in terms of FDR and thus its strong
performance can be attributed to the method’s inaccuracy.

We also note that the simulation setup used is favorable to
the tests which rely on the assumption of normality. This is
because the Gaussian mixture models have tails of similar
shapes to single Gaussian distributions which favors the z-
test and the robust z-test. The sampling of the peptide log-
ratios for each protein subsample from a single Gaussian
distribution strongly favors the t-test since the assumption of

Table 1. The total ranks for each of the hypothesis testing procedures over the FDR, TPR , ACC and AUC measurements.

Measurement — Test Permutation test z-test Robust z-test t-test Wilcoxon signed-rank test
FDR 124 65 35 107 74
TPR 75 90 134 35 71
ACC 121 67 47 84.5 85.5
AUC 108 115 77 67 38
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Table 2. Paired-sign p-values for the differences in ranks over the FDR, TPR , ACC and AUC measurements.

Measurement — Test z-test Robust z-test t-test Wilcoxon signed-rank test
FDR 4.172x 107 4.172x 107 5.925x 1073 4923x10°
TPR 0.1221 1.49x 10® 1.514x 103 0.2478
ACC 5.648 x 10° 4.172x 1073 5.925x 107 1.514x 103
AUC 1 0.01916 4.923x10° 4.923x10°

normality within the subsamples are held. In order to test
the performance of the permutation test under deviations
from normality, we simulated two additional scenarios
where we applied the Laplace distribution [62] and the Stu-
dent-t distribution with v = 3 degrees of freedom. The results
of these simulations can be found in Supplementary Section
2.

Analyses of these additional simulations show that the
permutation test has equivalent performance in both the
Gaussian and leptokurtic simulation scenarios. Our choices
of possible distributions for modeling the changed peptides
distributions are by no means exhaustive. Other examples of
possible deviations from normality include modeling the log
-ratios with Cauchy distribution mixtures [63], modeling the
tails with generalized Pareto distributions [44] or using
asymmetric up-regulated and down-regulated distributions.

4.1. False discovery rate mitigation

In the simulation scenarios, it is possible to calculate the
estimated FDR in each case due to the knowledge of the class
labels. However, in an experimental situation, where the true
nature of each protein is not known, it is desirable to control
the FDR at an acceptable level such that the FDR does not
inflate the multiple testing error rate of any downstream
analysis. Because the permutation test outputs a p-value, it is
easy to perform FDR control either with techniques such as
the Benjamini-Hochberg procedure [64] or with empirical
Bayes methods [65,66].

In any case, it must be acknowledge that with stricter con-
trol of the FDR, there is a trade-off of a reduction in the TPR.
Therefore, the cost of controlling the number of false discov-
eries made is that less of the truly changed proteins will be
declared as having a significant change in abundance.

4.2. Other methodologies

Apart from the z-test, Robust z-test, t-test and Wilcoxon
signed-rank test, there are many alternative methods availa-
ble for quantitative proteomics experiments. Such methods
include spectral counting methods and multiple experi-
mental replicates methods such as those found in [67] and
[22]. These methods, unlike the methods for ratios and log-
ratios rely on greater volumes of data from multiple repeated

experiments or richer experimental data outputs. Such com-
prehensive data is unavailable in many experimental situa-
tions, so we do not discuss these methods further.

Other methods which only rely on single ratio data sets
such as likelihood based approaches [44,68]. These methods
were not used for comparison because they are often appli-
cation specific and require statistical expertise which is not
available to many researchers. For this reason, we only chose
to discuss simple hypothesis testing methods such as permu-
tation testing on log-ratios since this is interpretable and
implementable by most researchers using data that is already
available to them.

4.3. Broader applications

Although the discussion has focused on permutation test-
ing of SILAC ratio data, as successfully implemented in [3],
the permutation test can also be applied to data resulting
from other relative quantitation methods such as isobaric
tags for relative and absolute quantitation (iTRAQ) [69],
isotope-code affinity tags (ICAT) [70], label-free quantita-
tion [67] and tandem mass tags (TMT) [71]. Outside of
quantitative proteomics, it is also possible to apply the per-
mutation testing method to fold-change data from microar-
ray gene expression experiments [33].

5. Concluding Remarks

The permutation test which we introduced is distribution
free, applicable across a range of relative quantitation meth-
ods, and was found to be superior to the other tests across
the spectrum of significance level through analyzing the
AUC statistics. At the usual 0.05 level it was also found the
permutation test generally performed better than the com-
peting methods over the ACC, FDR and TPR criteria.

The advantage of the permutation testing procedure over
more technical methods is that it is a simple hypothesis test
that outputs a p-value which can be interpreted by scientists.
This allows it to be controlled for FDR and inferred in the
same way as the p-values of other simple tests.

The permutation method is implementable in any pro-
gramming environment and an R implementation of the
procedure is available upon request. We are currently assem-
bling a server-based web interface to for the test with ease of
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deployment in mind. This web interface will provide addi-
tional data visualization and summarization facilities along
with the computation of the permutation p-values.

6. Supplementary material

Supplementary Material.pdf contains Supplementary Sec-
tion 1 and Supplementary Section 2.
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