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Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a 

novel member of the Coronaviridae family, emerged as a global 

health threat in December 2019, originating from the bustling city 

of Wuhan, China. Its rapid transmission and virulence swiftly 

propelled the onset of the COVID-19 pandemic, spreading 

relentlessly across continents and precipitating unprecedented 

challenges to public health systems worldwide [1-4]. Notably, SARS

-CoV-2 shares genetic similarities with other members of the 

coronavirus family, including Severe Acute Respiratory Syndrome 

Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome 

Coronavirus (MERS-CoV) [5-8]. Despite this genetic kinship, 

SARS-CoV-2 exhibits a distinctive clinical profile, encompassing a 

broad spectrum of manifestations ranging from mild respiratory 

symptoms to severe pneumonia and acute respiratory distress 

syndrome (ARDS). The multifaceted clinical presentation of 

COVID-19 underscores the imperative for a nuanced 

understanding of the genetic determinants underlying its 

pathogenesis and transmission dynamics [9-12]. 

Central to unraveling the complexities of SARS-CoV-2 infection is 

an elucidation of its genetic diversity and geographical distribution. 

The genetic variability exhibited by different SARS-CoV-2 strains 

holds pivotal implications for tracking transmission patterns, 

elucidating disease dynamics, and identifying potential therapeutic 

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 precipitated the onset of the COVID-19 
pandemic, which swiftly spread across more than 214 countries and territories, posing a significant global health crisis. In response, 
laboratories worldwide have embarked on extensive efforts to characterize the genomic landscape of the virus, employing a myriad of 
sophisticated genomic analysis techniques. This study endeavors to undertake a comprehensive exploration into the genetic diversity, 
geographical distribution, and virulence determinants of SARS-CoV-2 clades across 11 diverse countries, employing advanced computational 
biology methodologies. Leveraging molecular data sourced from prominent international databases, the analysis aims to unravel the intricate 
phylogenetic relationships and mutational dynamics exhibited by various viral strains circulating worldwide. The findings of this investigation 
promise to yield invaluable insights into the evolutionary trajectory of SARS-CoV-2, shedding light on potential therapeutic targets and 
informing strategies for mitigating the impact of the ongoing pandemic on global public health. Results highlight significant genetic diversity 
among SARS-CoV-2 strains across different countries, with phylogenetic analysis revealing distinct subclass groupings within each country. A 
manual comparison of sequences identified numerous mutations, with certain mutations associated with increased virulence. Comparison of 
clade G and clade O sequences revealed differences in mutation profiles, suggesting potential links to virulence and transmissibility. These 
findings underscore the dynamic nature of SARS-CoV-2 evolution and the importance of monitoring genetic changes for public health 
interventions. 

 

Keywords: SARS-CoV-2, COVID-19, Mutation, Variant, Phylogeny.  
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targets [13]. Against this backdrop, this study endeavors to 

undertake a comprehensive analysis of the genomic sequences of 

SARS-CoV-2 strains sourced from diverse geographical locations. 

By harnessing advanced computational biology methodologies, the 

investigation seeks to delineate the evolutionary dynamics and 

virulence determinants inherent to distinct viral lineages. 

Specifically, our research provides valuable insights into the genetic 

diversity and mutational dynamics of SARS-CoV-2 strains, which 

are critical factors influencing the virus's antigenic properties and 

its ability to evade host immune responses. By characterizing the 

genomic evolution of the virus and identifying potential virulence 

determinants, our study contributes to the broader understanding 

of how SARS-CoV-2 interacts with the immune system and how 

these interactions may impact disease severity, transmission 

dynamics, and vaccine efficacy. Moreover, the identification of 

distinct viral clades and mutation profiles across different 

geographic regions underscores the importance of ongoing 

surveillance and molecular epidemiology efforts, which are 

essential for guiding immunization strategies and vaccine design 

initiatives. By elucidating the evolutionary trajectory of SARS-CoV-

2, our research provides valuable insights that are pertinent to the 

field of immunology and have implications for public health 

interventions aimed at controlling the COVID-19 pandemic. 

Materials and methods 

Genome sequences of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) originating from 11 countries 

(Algeria, Germany, Australia, England, Spain, France, Italy, Saudi 

Arabia, Kuwait, Switzerland, USA) were retrieved from the Global 

Initiative on Sharing All Influenza Data (GISAID) database. A 

comprehensive dataset comprising a total of 298 SARS-CoV-2 

sequences was assembled for subsequent analysis. 

Sequence Analysis: Bioinformatics tools were employed for 

comprehensive sequence analysis, encompassing sequence 

alignment, phylogenetic tree construction, and mutation analysis. 

From those softawares we manged to work with MEGA 7, a 

desktop application for molecular evolutionary genetics analysis, 

facilitates the analysis of homologous gene sequences from 

multigene families or different species, focusing on inferring 

evolutionary relationships and DNA/protein evolution models 

[14]. Gblocks, a computer program, selectively removes poorly 

aligned positions and divergent regions from DNA or protein 

sequence alignments, enhancing the alignment quality for 

subsequent phylogenetic analysis. It follows reproducible 

conditions to select blocks based on conservation and gap density 

criteria, facilitating automation and reproducibility of phylogenetic 

analyses [15]. Additionally, GENIEGEN software allows for the 

analysis of DNA, RNA, and protein sequences, aiding in the 

discovery of genetic information expression, genotype-phenotype 

relationships, gene polymorphism, multigene families, and 

predictions in human genetics. It functions as a database of nucleic 

and peptide sequences, with the capability to incorporate new 

sequences [16]. Sequences were aligned using state-of-the-art 

alignment algorithms to ensure accurate alignment across the 

dataset. The resulting alignment served as the foundation for 

subsequent phylogenetic analyses. 

Phylogenetic Analysis: Phylogenetic trees were constructed 

using robust methodologies to elucidate the evolutionary 

relationships among SARS-CoV-2 strains. Phylogenetic tree 

construction involved iterative processes, with sequences grouped 

based on the geographical location and data size of the countries 

under study to facilitate comparative analysis: Group 1: USA; 

Group 2: UK (United Kingdom); Group 3: AUKA (Australia, 

Kuwait, Saudi Arabia, Algeria); Group 4: GISA (Germany, Italy, 

Switzerland); Group 5: FESP (France, Spain). The construction of 

phylogenetic trees aimed to delineate the evolutionary dynamics of 

SARS-CoV-2 strains, providing insights into their geographical 

distribution and evolutionary origins. 

Mutation Analysis: Mutations within SARS-CoV-2 genomes 

were systematically identified and analyzed to assess their potential 

impact on viral virulence and transmission dynamics. Comparative 

analysis of mutations between different clades enabled the 

identification of key genetic determinants associated with disease 

severity and transmissibility. Mutational landscape analysis 

provided critical insights into the evolutionary trajectory of SARS-

CoV-2 and its adaptive mechanisms in response to selective 

pressures. 

Statistical Analysis: Statistical methodologies were employed to 

quantify the significance of observed mutations and to assess their 

potential association with clinical outcomes. Comparative analyses 

between different clades and geographical regions were conducted 

to identify statistically significant differences in mutation 

frequencies and distributions. 

Ethical Considerations: This study adhered to ethical guidelines 

for the use of genomic data, ensuring compliance with data-sharing 

policies and privacy regulations. All genomic data were 

anonymized and obtained from publicly available databases, with 

no identifiable information included in the analysis. 

Results and Discussion 

In our study, we focused on the phylogenetic analysis and 

comparison of COVID-19, which has garnered significant media 

coverage since its emergence in December 2019. Numerous 

laboratories have dedicated considerable time and effort to 

characterizing the virus using multiple genome-based techniques, 

aiming for a comprehensive understanding of the SARS-CoV-2 

genome [17-20]. Nearly 300 sequences from various countries 

across different continents, obtained from the public GISAID 

database [21], were analyzed to achieve a clear resolution of the 

virus's diversity, evolution, mutations, and their positions within its 

genome. 

Phylogenetic Analysis 

Phylogenetic analysis of SARS-CoV-2 genomes unveiled a 

landscape rich in genetic diversity, reflecting the complex 

evolutionary dynamics of the virus. Within each country, distinct 

subclass groupings were discerned, underscoring the diverse 

evolutionary trajectories of SARS-CoV-2 strains across different 
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Figure 1: The phylogenetic tree grouping all countries of this study. 
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geographical regions. This intricate phylogenetic architecture 

highlights the dynamic nature of viral evolution and the potential for 

localized viral adaptation in response to environmental and host 

factors. Delving deeper into the phylogenetic trees, distinct patterns 

emerge within each country or region studied. For instance, in the 

USA (Group 1), a diverse array of viral lineages, encompassing clades 

G, GH, GR, S, L, V, and O, was observed, reflecting the complex 

epidemiological landscape of the pandemic. Similarly, phylogenetic 

analyses for other groups (ANG, AU, FE, ALL) unveiled a mosaic of 

viral lineages, underscoring the genetic heterogeneity inherent to 

SARS-CoV-2. The final phylogenetic tree (Figure 1) encompasses the 

results of previous steps and all the countries studied. It is divided 

into two classes, each further divided into subclasses grouping the 

different lineage sequences from the countries. We observed in the 

phylogenetic trees of this study that at the level of each subclass, there 

is no clear association with the region, lineage, or clade, reflecting the 

immense diversity and high mutability of this virus. 

Mutation Analysis 

A manual comparison of SARS-CoV-2 sequences using GenieGen 

software revealed a myriad of mutations scattered across the viral 

genome, indicative of ongoing genetic diversification. Notably, 

several mutations were identified that exhibited a significant 

association with increased virulence, implicating them as potential 

determinants of disease severity. Of particular interest were 

mutations observed in clade G and clade O sequences, which 

displayed distinct mutation profiles suggestive of differential 

virulence and transmissibility. These findings underscore the complex 

interplay between viral genetic variation and disease pathogenesis, 

highlighting the need for continued surveillance and monitoring of 

SARS-CoV-2 mutations for effective public health interventions. 

Table 1 presents the mutations identified through manual 

comparison of sequences from clades G and O for Group I countries, 

where mutations are observed in both clade O and clade G, as well as 

some mutations common to both clades, affecting various key viral 

proteins, such as ORF1ab, Spike (S) protein, and nucleocapsid (N) 

protein, suggests their potential role in shaping viral fitness and host 

interactions. 

Table 2 shows the mutations determined from the manual 

comparison of sequences from clades G and O for Group II 

countries, where some mutations are exclusive to clade O, others to 

clade G, and some common to both. Additionally, there are a few 

mutations shared between Groups 1 and 2. Among the comparison 

results, 283 mutation positions are identified in the two preceding 

tables, along with 926 positions of rare mutations, indicating the high 

mutation rate this virus can undergo. Based on these findings, we 

suggest that mutations present in clade O may lead to a decrease in 

virus virulence. The differences in results between the two groups of 

countries allow us to conclude the significant diversity of this virus. 

Furthermore, comparative analyses between clades G and O shed 

light on specific mutations associated with each clade, hinting at 

potential differences in virulence and transmissibility. Noteworthy 

mutations identified in Group I and Group II countries, spanning 

crucial viral proteins, offer tantalizing insights into the evolutionary 

forces driving the diversification of SARS-CoV-2. 

Implications for Public Health 

The dynamic nature of SARS-CoV-2 evolution underscores the 

importance of vigilant surveillance and monitoring of genetic 

changes for the development of targeted public health interventions. 

By elucidating the genetic determinants of viral virulence and 

transmissibility, we can better inform the design of therapeutic 

strategies and vaccine development efforts. Moreover, the 

identification of specific mutations associated with increased 

mortality rates provides valuable insights into potential targets for 

therapeutic intervention, paving the way for the development of 

precision medicine approaches tailored to individual patient needs. 

Importantly, our findings corroborate previous studies [22, 23] 

suggesting differential virulence between clades G and O. The 

identification of specific mutations linked to virulence underscores 

the urgent need for targeted therapeutic interventions. Molecular 

docking studies targeting key mutations, particularly those associated 

with heightened virulence, hold promise as a strategy to mitigate the 

impact of the COVID-19 pandemic. 

The study has several limitations that warrant consideration. Firstly, 

reliance on genomic data sourced from public databases introduces 

the potential for sampling bias, as certain geographic regions or 

demographic groups may be overrepresented or underrepresented. 

Additionally, variability in the accuracy and completeness of genomic 

data, along with potential sequencing errors or artifacts, could impact 

the reliability of mutation calls and phylogenetic reconstructions. 

While the study provides a snapshot of SARS-CoV-2 evolution at a 

specific time, ongoing viral evolution may lead to changes in genetic 

diversity and evolutionary relationships over time. Furthermore, 

establishing causal relationships between genetic variation and 

clinical outcomes requires additional experimental validation and 

clinical correlation studies, highlighting the need for caution in 

interpreting associations between mutations and virulence. 

Methodological constraints, such as algorithmic biases or 

assumptions, may also affect the robustness of the findings, 

necessitating careful validation and sensitivity analyses. Moreover, 

the generalizability of the findings may be limited to the specific 

dataset and analytical methods used, requiring replication in 

independent datasets and diverse populations for validation. Ethical 

considerations regarding data privacy, informed consent, and data 

sharing must also be addressed to safeguard individual rights and 

privacy. Finally, interpretation of phylogenetic trees and mutation 

profiles may be subject to bias, highlighting the importance of 

transparency and rigor in reporting methodologies and results. 

Conclusions 

In summary, this study offers a comprehensive examination of the 

genetic landscape, geographical distribution, and virulence 

characteristics of SARS-CoV-2 strains across a diverse array of 

countries. The intricate phylogenetic patterns observed underscore 

the dynamic nature of viral evolution and the capacity for adaptation 

to various environmental pressures. The results of this study 
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Position Clade G Clade O Mutation type Repetition number Region 

8788 + + Substitution T/C 8 (O) / 2 (G) ORF1ab 

14811 - + Substitution T/C 10 ORF1ab 

11089 - + Substitution T/G 9 ORF1ab 

14414 + + Substitution C/T 10 (O) / 3 (G) ORF1ab 

20274 + + Substitution G/A 3 (O) / 9 (G) ORF1ab 

23394 - + Substitution A/G 4 Protein S 

23403 + + Substitution G/A 15 (O) / 4 (G) Protein S 

23409 + + Substitution A/G 11 (O) / 1 (G) Protein S 

24868 + - Substitution G/A 4 Protein S 

26150 - + Substitution T/G 8 ORF3a 

25435 + - Substitution T/G 4 ORF3a 

25569 + + Substitution T/G 4 (O) / 3 (G) ORF3a 

26720 - + Substitution C/G 2 Protein M 

26536 + - Substitution C/A 2 Protein M 

28083 - + Substitution C/G 2 ORF8 

28150 - + Substitution C/T 6 ORF8 

28151 - + Substitution C/T 2 ORF8 

28317 - + Substitution C/T 5 Protein N 

28694 - + Substitution C/T 3 Protein N 

28688 - + Substitution C/T 3 Protein N 

28881 + + Substitution A/G 6 (O) / 2 (G) Protein N 

28882 + + Substitution A/G 5 (O) / 2 (G) Protein N 

28883 + + Substitution C/G 5 (O) / 2 (G) Protein N 

28887 + + Substitution A/G 1 (O) / 3 (G) Protein N 

28888 + + Substitution A/G 1 (O) / 3 (G) Protein N 

28889 + + Substitution C/G 1 (O) / 3 (G) Protein N 

Table 1: Different mutations to identify from the comparison of the sequences of the countries of the Group 1. 

Position Clade G Clade O Mutation type Repetition number Region 

3028 - + Substitution C/T 6 ORF1ab 

3031 - + Substitution T/C 7 ORF1ab 

3037 + + Substitution C/T 17 (O) / 4 (G) ORF1ab 

3336 - + Substitution C/T 8 ORF1ab 

11083 - + Substitution T/G 11 ORF1ab 

14805 - + Substitution T/C 4 ORF1ab 

14408 + + Substitution C/T 10 (O) / 6 (G) ORF1ab 

23380 - + Substitution A/G 4 Protein S 

23394 - + Substitution A/G 4 Protein S 

23403 + - Substitution G/A 16 (O) / 4 (G) Protein S 

26720 - + Substitution C/G 2 Protein M 

28144 - + Substitution C/T 3 ORF8 

28688 - + Substitution C/T 3 Protein N 

28881 + + Substitution A/G 6 (O) / 2 (G) Protein N 

28882 + + Substitution A/G 5 (O) / 2 (G) Protein N 

28883 + + Substitution C/G 5 (O) / 2 (G) Protein N 

Table 2: The different mutations to be identified from the comparison of the sequences of the countries of 

Group 2. 
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underscore the dynamic nature of SARS-CoV-2 evolution and its 

implications for public health. Phylogenetic analysis revealed 

significant genetic diversity among viral strains, with distinct subclass 

groupings observed within each country, our analysis led us to 

conclude that globally, the virus's distribution does not correlate with 

regions, lineages, or clades at the subclass level, underscoring the 

virus's immense diversity and mutability. Moreover, the high 

mutation rate and mutations present in clade O suggest a potential 

cause for the virus's reduced virulence.  

By elucidating the genetic determinants of viral virulence, this study 

provides crucial insights that can inform the development of targeted 

therapeutic interventions and vaccine strategies aimed at combating 

COVID-19. Furthermore, the identification of specific mutations 

offers promising avenues for further investigation through molecular 

docking studies, which may unveil potential therapeutic targets for 

drug development. Moving forward, sustained surveillance efforts are 

imperative to monitor the ongoing evolution and transmission 

dynamics of SARS-CoV-2, facilitating timely interventions and 

control measures to curb the spread of the pandemic and minimize 

its impact on global health. 
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Introduction 

Quantifying total protein in biological samples illuminates 

interactions, signalling pathways, and cellular processes, aiding in 

diagnostics by comparing health versus disease conditions. 

Selecting a protein assay method is a complex decision, requiring 

consideration of the advantages and disadvantages inherent to each 

method, such as interferences, accuracy, reproducibility, sample 

handling and throughput. To minimize sample manipulation, 

researchers often maintain different protein assay methods in their 

laboratories to address diverse experimental requirements 

efficiently. In proteomics, protein determination is the prerequisite 

for optimal protein digestion and, subsequently, peptide 

characterization via mass spectrometry analysis.[1] 

The Bradford protein assay was developed by Marion M. Bradford 

in 1976 [2]. It is a well-known colourimetric protein assay that 

relies on the change in absorption of the Coomassie Brilliant Blue 

G-250 dye. The Coomassie Brilliant Blue G-250 dye, existing in 

anionic, neutral, and cationic forms, undergoes a colour shift from 

red to blue under acidic conditions, binding to proteins during 

testing. The dye forms a strong non-covalent complex with the 

protein's carboxyl and amino groups through van der Waals forces 

and electrostatic interactions, exposing hydrophobic pockets in the 

protein's tertiary structure. The bound anionic form of the dye, 

maintained by hydrophobic and ionic interactions, exhibits a 

maximum absorption spectrum at 595 nm. The increase in 

absorbance at this wavelength is proportional to the quantity of dye 

that binds to amino acids, which can be linked to the protein 

concentration in the sample [3]. However, notable interferences 

include high concentrations of detergents, such as sodium dodecyl 

sulfate (SDS), commonly found in protein extracts used for cell 

lysis and protein denaturation. Moreover, the method is sensitive 

to time variations in sample incubation. In addition, the Coomassie 

Blue G250 dye binds preferentially to arginine and lysine protein 

groups, which may result in a varied assay response for different 

proteins. Despite these drawbacks, the Bradford assay remains 

widely used. 

Assessing total protein levels in biological samples is a common procedure in biochemistry and molecular biology. In this study, 
we compare tryptophan fluorescence (WF) with Bradford and BCA assays to determine total protein in serum samples. Our 
results indicate that tryptophan fluorescence spectrometry is an efficient, sensitive, and straightforward technique for 
quantifying proteins in serum. We observed minimal variation between the three methods: BCA de one with the lowers LOD 
and LOQ. The tryptophan method offers the possibility of reusing the intact sample that does not need colourimetric reagents 
for quantification. Consequently, free tryptophan serves as a reliable universal standard. This assay can be performed using a 
conventional fluorescence spectrometer with cuvettes or in a 96-well plate format with a plate reader. The method was 
successfully used as proof of concept, using serum from patients diagnosed with myeloma and serum from healthy donors. 

 

Keywords: DTT equalization, tryptophan, proteomics, serum, multiple myeloma. 

Abstract 
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The Bicinchoninic Acid-based method for protein quantification, 

known as BCA method, was first published by Smith et al. in 1985. 

Later, in 2010, the Thermo Scientific Pierce BCA Protein Assay 

Kit [4] was introduced, which employs a detergent-compatible 

formulation based on bicinchoninic acid (BCA) for colourimetric 

protein detection and quantitation. This method uses the biuret 

reaction, in which proteins in an alkaline medium reduce Cu+2 to 

Cu+1, which react with bicinchoninic acid, forming a purple-

colored complex, which exhibits strong absorbance at 562 nm. The 

color formation in the BCA assay is influenced by the 

macromolecular structure of proteins, the number of peptide 

bonds, and the presence of specific amino acids (cysteine, 

tryptophan, and tyrosine). Limitations include incompatibility with 

reducing agents and metal chelators, although trace quantities may 

be tolerated, and reported responsiveness to common membrane 

lipids and phospholipids. 

Tryptophan [5] exhibits intrinsic fluorescence due to its indole 

ring. This fluorescence arises from the absorption of ultraviolet 

(UV) light, typically around 280 nm, followed by the emission of 

light at longer wavelengths, generally around 340-350 nm. Once 

the quantum yield of tryptophan fluorescence is relatively high, 

makes it a sensitive probe for protein detection. Tryptophan 

fluorescence can be used for the quantification of proteins because 

the fluorescence intensity is proportional to the concentration of 

tryptophan-containing proteins. Furthermore, the requirement for 

lower sample volumes compared to alternative quantification 

methods makes tryptophan fluorescence assays suitable for 

situations where sample amount is limited. The assay is fast, 

contributing to streamlined laboratory workflows. Moreover, the 

method demonstrates minimal interference from substances 

commonly present in biological samples, ensuring more accurate 

results, especially in complex matrices.[5,6] Overall, the 

combination of real-time monitoring, low sample volume, 

quickness, and minimal interference positions tryptophan 

fluorescence assay as a valuable tool for protein quantification. In 

this work, we have used the three aforementioned methods to 

compare protein quantification in the serum of healthy individuals. 

Materials and methods 

Human serum samples: The serum samples from 11 healthy 

volunteers were used. Data about the study cohort are presented in 

Supplementary Material 1, Table 1. 

Serum sample preparation: Serum samples were collected in red 

glass vacutainer tubes without anticoagulants or preserves. The 

samples were allowed to clot at room temperature, RT, followed by 

centrifugation at 2 000 x g for 10 minutes at RT. After 

centrifugation, serum was aliquoted and stored at -80 ºC. 

 

Bradford assay: Bovine serum albumin (BSA) was used to 

generate a calibration curve ranging from 0.125 to 1.4 µg/µL. 

Briefly, BSA working solutions containing 25 to 280 µg were 

pipetted into 0.5 mL microtubes, followed by adding MQ water up 

to 200 µL. To quantify the serum samples, we initially prepared a 

1:100 serum dilution in MQ-water to ensure that concentrations 

were within the linear range. Five μL of each standard and diluted 

serum were loaded in duplicates into each well, followed by the 

addition of 250 μL of Bradford Reagent. MQ-water was used as a 

blank. Afterwards, standards, samples and blanks were incubated at 

room temperature for 20 minutes. Finally, absorbances at 595 nm 

were measured using the Clariostar microplate reader.  

 

Bicinchoninic acid assay (BCA): For protein quantification 

using the BCA assay, we employed the Pierce BCA Protein Assay 

Kit from Thermo Scientific with part number 23225. Following the 

manufacturer's protocol, we chose the microplate procedure as 

outlined below: 25 μL of each standard and samples were pipetted 

in duplicate into individual wells of a microplate (working range = 

0.02 – 2 μg/μL). Subsequently, 200 μL of the Pierce reagent was 

added. The plate was gently mixed for 30 seconds, covered with 

aluminum foil, and then incubated for 30 minutes at 37 ºC. Finally, 

absorbances at 562 nm were measured using the Clariostar 

microplate reader. 

Tryptophan emission assay: The standard calibration curve was 

created using 0.0102 µg/µL tryptophan dissolved in 8M Urea in 

0.1M Tris-HCl pH 8 to span a linear detection range from 0 to 

5.1x10-3 µg/µL. For measurement, 75 µL of calibration solutions 

were transferred to a quartz-bottom 96-well plate. A dilution 

protocol was applied to align with the assay's linear range to assess 

the concentration of proteome and proteome digest in unknown 

samples. This involved adding 5 μL of each sample in duplicate to 

the plate wells, followed by adding 70 μL of the 8M Urea in 0.1M 

Tris-HCl pH 8. Measurements were performed with an excitation 

wavelength set at 280 nm, with a long pass dichroic mirror at 309 

nm and an emission wavelength of 350 nm, utilizing a bandwidth 

of 20 nm. The quantification of proteome and proteome digest was 

derived from fluorescence intensity measurements, which applied 

an average tryptophan weight content assumption of 1.17% for 

human proteins [5]. 

 

Depletion of abundant serum proteins: To 20 μL of the raw 

serum sample, 2.2 μL of 500 mM DTT was added, followed by 

incubation for 30 minutes at 37 ºC. This procedure was performed 

in triplicate. After incubation, samples were centrifuged at 20,000 x 

g for 20 minutes. Afterwards, the supernatants were withdrawn to 

new microtubes, and the pellets were gently washed with ten μL of 

MQ H2O. The washing factions were combined with the previous 

supernatants. Quantifying the protein concentration in the 

depleted samples: Supernatants (SN) were quantified via 

Tryptophan Emission as described previously. Quantifying the 

protein content in the pellet was done using the following formula: 

μ                       = μ                          − μ  

                 - Equation 1. 

 

Protein reduction, alkylation and digestion: Sample 

preparation was performed as described previously, with 

optimization for the supernatant and pellet samples.[7,8] Initially, 

supernatant samples were diluted to achieve a target protein 

concentration of 103 ± 8 μg per 20 µL of sample volume. This step 

was followed by adding 5 μL of a Reduction/Alkylation solution 

consisting of 10 mM TCEP, 40 mM CAA, 0.1M Tris-HCl pH 8.8, to 
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each sample. The mixture was then incubated for 30 minutes at 37 ºC. 

The pellets were solubilized with 150 μL of 70 mM TEAB followed by 

probe sonication for 1 minute (Ultrasonic frequency: 30kHz, 

Ultrasonic Amplitude: 100%, Cycle time: 0,8 s). Afterwards, 100 ± 2 

μg of the pellets’ proteins (final volume of 20 µL) were reduced with 5 

μL of Reduction/Alkylation solution. Before trypsin digestion, 

samples were diluted to 150 µL with 70 mM TEAB. 

For the proteome digestion phase, 5 μL of a Trypsin/Lysine-C 

solution, at a concentration of 0.67 μg/μL prepared in 70 mM TEAB, 

was added to each reduced and alkylated sample. The samples were 

left to digest overnight at 37 ºC. Following digestion, the resultant 

peptide mixtures were concentrated by drying in a speed vacuum 

concentrator. Before downstream analysis, peptides were 

resolubilized in 150 μL of 3% (v/v) Acetonitrile (ACN) in 0.1% (v/v) 

aqueous formic acid (FAaq), followed by 10 minutes of sonication 

using an ultrasonic bath at 100% ultrasonic amplitude. 

 

LC-MS/MS analysis was performed using UltiMate 3000 ultra-

high performance liquid chromatographer from Thermo Scientific, 

coupled to Ultra High-Resolution Quadrupole Time-of-Flight (UHR-

QTOF) IMPACT HD mass spectrometer from Bruker. 0.5 μL of the 

sample with a total peptide concentration of 0.6 μg/μL were loaded 

onto a μPAC Trapping column and desalted for 2.7 min with 1% (v/

v) ACN in 0.1% FAaq at a flow rate of 15 μL min-1. Then the peptides 

were separated using an analytical column (200 cm μPACTM 

PharmaFluidics). with a linear gradient at 500 nL min-1 (mobile 

phase A: FAaq 0.1% (v/v); mobile phase B: 99.9% (v/v) ACN and 

0.1% (v/v) FAaq) 0–2 min from 3% to 5% of mobile phase B, 5–76 

min from 5% to 17% of mobile phase B, 76–104 17% to 25% B, 104–

121 25% to 35% B. Chromatographic separation was carried out at 35 

ºC. MS acquisition was set to MS (2 Hz) cycles, followed by MS/MS 

(8–32Hz), cycle time 3.0 seconds, active exclusion, exclude after one 

spectrum, release after 2 min. The precursor was reconsidered if its 

current intensity was 3.0 higher than the previous intensity and 

intensity threshold for fragmentation of 2500 counts. 

 

Bioinformatics data analysis and functional enrichment: Raw 

LC−MS/MS data were processed in MaxQuant (V.1.6.10.43) for 

protein identification and label-free quantification using standard 

settings.[9] Peptide lists were searched against the human Uniprot 

FASTA database. A contaminant database generated by the 

Andromeda search engine was configured with cysteine 

carbamidomethylation as a fixed modification and N terminal 

acetylation and methionine oxidation as variable modifications.[10] 

We set the false discovery rate (FDR) to 0.01 for protein and peptide 

levels with a minimum length of seven amino acids for peptides, and 

the FDR was determined by searching a reverse database. Enzyme 

specificity was set as C-terminal to arginine and lysine as expected 

using trypsin. A maximum of 2 missed cleavages were allowed. Data 

processing was performed using Perseus (version 1.6.10.50) with 

default settings [11]. All proteins and peptides matching the reversed 

database were filtered out[12]. 

Results and Discussion 

Comparison between Bradford-, BCA- and Tryptophan-

based assays 

To compare the Bradford, BCA, and Tryptophan assays, we used sera 

from 11 healthy individuals. For the Bradford and BCA assays, we 

used BSA to generate a calibration curve, as described in the material 

and methods section. For the tryptophan emission assay, the 

calibration curve was generated with L-Tryptophan. After the 

calibration curve was generated, we calculated the limit of detection 

(LOD) and limit of quantification (LOQ) for each assay. For the 

Bradford assay, the LOD was 0.002 µg/µL, and the LOQ 0.06 µg/µL. 

In contrast, for the BCA method, the LOD was 0.01 µg/µL, and the 

LOQ was 0.05 µg/µL. Finally, the tryptophan emission assay, with a 

LOD of 0.001 µg/µL and LOQ of 0.01 µg/µL, proved to be the most 

sensitive. Our LOQ for tryptophan-based assay matches those 

reported in the literature [5]. Subsequently, the protein content of the 

raw sera, pellets, and supernatants was determined in triplicate. 

Results are shown in Figure 1a and in Supplementary Material 1 

Table 2. When comparing the assays, the Bradford provides less 

scattered data, while the BCA consistently provides slightly higher 

protein concentration values. The Bradford assay was found to be the 

most accurate. It is worth noting that the normal range for serum 

total protein concentration typically falls within the range of 60–80 g/

L.[13] Figure 1a shows (i) that the Bradford assay analysis revealed a 

total protein concentration ranging between 57 and 70 g/L; (ii) that 

the BCA assay was found to present a more extensive range spanning 

from 62 to 81 g/L, and (iii) that the assessment conducted via the 

tryptophan emission assay exhibited a range of 56 to 76 g/L. 

Assessment of the DTT-based serum protein equalization 
process 

Serum constitutes a complex mixture of tens of thousands of 

proteins, some highly abundant while others are in significantly lower 

concentrations. For an in-depth analysis of plasma proteomics, it is 

imperative to employ a depletion or equalization strategy to target the 

less abundant, potentially more insightful, proteins. Treatment of 

serum with DTT results in a pellet (P) containing highly abundant 

proteins and a supernatant (SN) rich in less abundant protein, among 

them, and remarkably, immunoglobulins 14. We applied the DTT 

approach, tryptophan quantification and label-free quantitative 

proteomics to access the serum proteome of raw serum and the 

depletion faction (SN and P). The effect of DTT over raw serum is 

shown in Figures 1 b and 1c. For the proteomics analysis, we 

performed a comparison using Z score normalization of the log-2 

transformed data derived from the mass spectrometry measurements. 

A multiple-sample ANOVA test was employed, utilizing a 

permutation-based false discovery rate (FDR) approach with a 

threshold of 0.05 FDR and S0 set to 0. The statistically significant 

different proteins were selected, and a Hierarchical cluster was 

generated using Euclidean Distance for both tree rows and columns 

as depicted in Figure 1 c, which shows in a heatmap the proteins 

differentially expressed among raw, the Ps and the SNs. The list of 

these proteins is depicted in Supplementary 1 Table 5. Thus, a group 

of proteins (in green) with lower levels than in the P or in the raw 

data can be seen in the SN. This group constitutes the most abundant 

proteins present in lower levels in the supernatant as they tend to 
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Figure 1 – Comprehensive proteomic analysis of human health serum. a) Violin plot of data distribution from three methods comparison in 

healthy individuals (n=11). Blue: Bradford assay. Orange: BCA assay. Green: tryptophan emission assay. Each sample was analyzed in dupli-

cate. b) Distribution and density variation of protein mass (including two biological replicates) at each point for each fraction. The continuous bar 

in the middle represents the median. Discontinuous line represents the quartile lines. c) Hierarchical clustering of the three fractions analyzed 

(raw sera, supernatant and the pellet). Protein LFQ values were used to perform the cluster analysis (with average linkage, no constraint, pre-

processing with k-means and Euclidean distance). d) Violin plot illustrating the data distribution of the three most abundant proteins in serum 

samples obtained from healthy individuals. SN corresponds to Supernatant, P corresponds to Pellet, and Raw corresponds to raw sera. Con-

centrations were derived from LC-MS/MS raw intensities using the total protein approach. e) Venn diagram illustrating the overlap of proteins 

identified in the raw serum, and in the depleted SN and Pellet fractions. 
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precipitate into the pellet. In this group of depleted proteins, we 

found, for instance, albumin, serotransferrin, a-1-Antitrypsin, 

plasminogen, complement-associated proteins, and apolipoproteins, 

which are some of the most abundant proteins present in serum. On 

the other hand, the less abundant proteins in the raw sera (in green) 

become more abundant in the supernatant (in red). This is a clear 

example of the highly abundant protein DTT equalization effect on 

the raw sera. This effect is further exemplified in the case of 3 

individual proteins, as presented in Figure 1 d. Thus, albumin, the 

most abundant protein constituting circa 90% of the total protein 

content in serum, is found to be the most abundant protein in the 

pellet, with its level reduced about 16-fold in the supernatant. This is 

also an exciting characteristic of the DTT approach; instead of 

depleting the complete protein, some remains in solution. As 

albumin can also carry other proteins, its complete depletion from 

serum is not recommended. A similar situation can be observed for 

Apo A1 and Transferrin. The DTT works by equalizing the levels of 

the proteins in the supernatant rather than depleting a set of proteins. 

This concept is visualized in Figure 1e, where it can be seen that 94% 

of the proteins are commonly identified in raw serum, pellet, and 

supernatant. 

Conclusions 

The tryptophan assay is more sensitive than the Bradford and BCA 

analysis for proteomics purposes, with the advantage of simplicity 

and throughput. Furthermore, it is non-destructive, and the sample 

can be reutilized, further validating its use in proteomics. By applying 

DTT and tryptophan quantification, this study demonstrates the 

effectiveness of the DTT-based equalization process in revealing less 

abundant proteins, offering a promising avenue for deep proteomic 

analysis. The ability of DTT to maintain some proteins in solution, 

rather than completely depleting them, is particularly beneficial for 

preserving proteins like albumin that carry other proteins, thus 

avoiding their complete removal from serum analysis. 
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