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At a time when Universities closed their doors to research
during the COVID-19 pandemic out of safety concerns,
researchers endured and even thrived. While some faculty
and graduate students used this closure time to write review
papers, grants, or develop research plans for their specific
fields of interest, many academic researchers turned towards
computational modeling to solve COVID problems.
Although we all knew that computational modelling can be
done at home, not requiring access to University research
labs, we did not realize how helpful computational
modelling would be to find solutions for COVID-19.

3 years after the onset of the COVID-19 pandemic, it is
clear that computational modeling significantly helped us
get through COVID-19 [1-7]. From using molecular
dynamics to understand binding of the SARS-CoV-2 spike
protein to the ACE2 receptor of mammalian cells during the
virus replication process to optimizing the design of small
molecules to bind to the envelop protein of SARS-CoV-2 to
stop it from replicating, the field of computational modeling
was critical at a time when academic research labs were
unavailable  [4].  Further, adsorption, distribution,
metabolism and excretion (ADME) and quantitative
structure-activity relationship (QSAR) computational
modeling was also instrumental towards understanding the
pharmacological properties of COVID therapies and
vaccines [8]. Without such advances in computational
modeling made throughout the decades, it is clear that we
would not have the COVID-19 solutions that we have today,
including COVID prevention, diagnosis, and treatment.

Our personal story includes one of frustration then
exultation where upon the onset of COVID-19 in the Fall of
2019 and Spring of 2020, we believed as scientists it was our

duty to help the world get through the COVID-19
pandemic. Many researchers did the same, making masks
for healthcare workers when there were shortages,
developing new more sensitive and easy to use diagnostic
kits, and trying to develop vaccines and therapies for
COVID-19 [10]. While we had over 20 years of experience
in biomaterials and tissue engineering, we had little to no
experience in viruses or virology. So, how could we
contribute to finding COVID solutions? And, even if we did
have ideas, it got worse. Like many Universities, our
University research labs were shut down due to COVID
safety protocols, despite the fact that many industries kept
their labs open enabling their researchers to conduct life
saving research.

So, in the early days of COVID-19, we were stuck. We did
not know how to help and we had no where to conduct
studies anyway. Thankfully, during this critical time in our
global health, the scientific community initiated virtual
webinars, conferences, and other activities to keep our
minds active. We distinctly remember giving several
webinars concerning how nanotechnology was trying to
provide solutions to COVID-19 through embedding
nanoparticles in masks which could release reactive oxygen
species to passivate SARS-CoV-2 when trapped in masks to
using iron oxide nanoparticles functionalized to attach to
SARS-CoV-2 increasing detection sensitivity under an
applied magnetic field [6]. Even Moderna and Pfizer were
researching nanodimensional liposomes for brand new
mRNA based vaccines [9]. After one of these webinars, we
had an idea: transition the self-assembled nano materials
that we were previously developing for tissue engineering
applications into those which can attach, self-assemble

*Corresponding author: Thomas Webster, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China; School of
Engineering, Saveetha University, Chennai, India; Program in Materials Science, UFPI, Teresina, Brazil. websterthomas02@gmail.com
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around, and “blanket” SARS-CoV-2 inhibiting it from
entering mammalian cells to replicate [4-8, 10]. Our
nanomaterials were similar in size to SARS-CoV-2, so the
idea theoretically could work. But what could we
functionalize onto our self-assembled materials to attract
them to SARS-CoV-2? And where could we experimentally
prove this concept?

Computational modeling came to our rescue. We quickly
contacted several virologist friends to obtain the amino acid
sequence of the envelop protein of SARS-CoV-2 and
developed peptide sequences that compliment those regions
for attachment [11]. While everyone else was targeting the
spike protein in SARS-CoV-2, we targeted the envelop
protein since we knew the spike protein would eventually
possess more mutations than the envelop protein. Then, as
we were still unable to complete research in our academic
research labs (going well into 2020), we used molecular
dynamics extensively to identify a self-assembled nano
material that would strongly attach to SARS-CoV-2,
“blanket it”, and keep it from replicating. After extensive
molecular dynamics simulation, we then completed
pharmacological computational modeling (ADME and
QSAR) to further validate our self-assembled nanomaterial
[8]. We then spun out this molecule commercially and we
were able to conduct in vitro and in vivo studies validating
the efficacy of this self-assembled nanomaterial towards
passivating SARS-CoV-2 (and other viruses) [12].

Looking back at our experience, we are incredibly grateful
to the computational modeling community. At a time when
we and others needed them most due to experimental lab
closures, we were able to quickly and effectively learn
computational models that have been developed and
optimized over the decades. We would not have developed a
therapy or so many other technologies to help fight COVID

had it not been for computational nanomedicine.
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ABSTRACT

Background: SARS-CoV-2 virus is currently one of the main causes of death worldwide. Several studies have suggested that various trace
elements play a vital role in the immune activity during viral infection, being an important tool to understand the SARS-CoV-2 infection and
its systemic behavior, which affects different organs.

Purpose: To summarize recent studies that report the effect of trace elements on the immune system and their role in fighting SARS-CoV-2
infection, presenting potential biochemical routes.

Method: The main databases (ScienceDirect®, Scopus®, PubMed®) were consulted to search for works published up to October 2022, focusing
on the role of trace elements in the immune activity against viral infection, including SARS-CoV-2.

Conclusion: Many elements can act both in the activation of the host’s immune activity and in the survival of the virus since these processes
occur with the participation of essential metals to guarantee the integrity of their functions. However, the relationship between trace elements

and viral infection is complex, and requires further studies, mainly, focusing on the systemic behavior of SARS-CoV-2 infection.

Keywords: Viral infection; immune system; trace elements homeostasis; biochemical mechanisms.

1. Introduction

Viruses are small particles composed of genetic material
(RNA or DNA) surrounded by a layer of proteins or lipids
that replicate rapidly after infection in the host [1, 2]. SARS-
CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-
2), responsible for Coronavirus disease-19 (COVID-19) has
become the deadliest virus in the last two years, causing
more than six million deaths (data up to October 2022)
worldwide [3]. Unlike other viral infections, SARS-CoV-2,
originating in Wuhan (China), presents a systemic infection,
affecting different parts of the body, including the
respiratory tract, hematological, gastrointestinal, and
neurological [2, 4].

Several essential metals play central roles in viral
infections since some trace elements are present in the
structure of essential metalloproteins responsible for the
immune activity against the infection and for virus
attachment to the host [1, 5]. For example, copper (Cu), iron

(Fe), and zinc (Zn) are some of the most important cofactors
present in metalloproteins associated with some infections
[5-8]. Thus, various trace elements participate in different
functions, including reverse transcription, catalytic
mechanisms, genome maturation (RNA or DNA), initial
integration, and the protection of newly synthesized DNA
[9, 10].

This review summarizes recent studies on the impact of
dysregulation (excessive and deficient) of the main trace
elements in the body and their effects on the immune system
against SARS-CoV-2 infection.

2. The function of essential elements in the immune activity
against viral infection

The search was conducted in the databases ScienceDirect,
Scopus, and PubMed using the keywords "viral infection",
"immune system" and "trace elements homeostasis". These
main databases were consulted to search for works
published in the last ten years (up to October 2022). The

*Corresponding author: Jemmyson Romario de Jesus, Department of Chemistry, Federal University of Vigosa, Vigosa, Minas Gerais, 36570-900, Minas Gerais;

jemmyson_romario@yahoo.com.br

216 1-9:3



Jemmyson Romdrio de Jesus et al., 2022 | Journal of Integrated Omics

articles selected were recent studies that reported the role of
trace elements in the immune activity against viral infection,
including SARS-CoV-2.

3. The function of essential elements in the immune activity
against viral infection

The immune system is modulated by several antigen-
presenting cells that maintain the physiological integrity of
the organism. After being infected by a virus through the
angiotensin-converting enzyme 2 (ACE2), the human body
undergoes some changes to fight the infection [11]. The first
change is vasodilation, which allows immune cells to reach
to the infected tissue [2, 11]. Then, the virus is attacked by
the first line of defense (innate response) which is
constituted by neutrophils and macrophages [1, 2, 11]
(Figure 1). Thus, when any virus infects the organism, it is
initially =~ phagocyted by T- and B-lymphocytes
(macrophages) [12, 13]. Then, the second line of defense of
the immune system (adaptative response) is activated. The
adaptative response consists of antibodies (IgA, IgM, and
IgG) [4, 12, 14]. Another important component during the
fight against viral infection is the cytokines, which act in the
establishment of intercellular communication [1, 15-17].

Essential elements such as Fe, Se, Zn, Cu, among others
have immunomodulatory activity influencing various
components of the immune system [18]. In this regard,
several studies have reported changes in the levels of trace
elements in the body during viral infections, including SARS
-CoV-2 [8, 19, 20]. Below, we discuss the importance of the
main essential elements for the immune system, highlighting
how their imbalance can lead to severe infections.

Virus

Infected Cells

e

:] L o o Macrophage
Natural Killer Cell ~ T-Lymphocyte

Innate Immunity

B-Lymphocytes

3.1 The importance of zinc in antiviral immunity

Zinc is a trace element that is associated with the
regulatory function and maintenance of the immune system
(Figure 2) [21-23].

Zn can be found in different organs, representing an
integral component of the human body, and is found in free
form (zinc ions) or bound to biomolecules [24]. As several
enzymes have Zn as a cofactor, the integrity of immune
barriers is preserved by Zn, improving the activity of natural
killer cells (NKCs), and maintaining strong antiviral activity
[25-27]. Thus, in a viral infection, including SARS-CoV-2,
Zn can effectively act to inhibit the activity of the virus,
inhibiting the elongation phase of RNA synthesis [2]. This
action is justified due to its effect on the mold binding of Zn,
thus, affecting SARS-CoV-2 replication [1]. In addition,
evidence has shown that Zn deficiency is associated with
decreased activity of NKCs and reduced antibody
production, impairing immune activity = [26-29].
Macrophage production is also affected by Zn deficiency,
dysregulating cytokine production, and phagocytosis. Zn
deficiency also potentiates apoptosis.

Although there is not clearly a biochemical mechanism
described, studies report that Zn can assist in the inhibition
of viral protease and virus fixation, preventing infection [I,
29]. Thus, it is possible that Zn supplementation may be of
great importance against SARS-CoV-2 infection, regulating
some cell functions, such as cell activation and division,
playing a vital role in the immune system (adaptative and
innate immunity) [30, 31]. In addition, zinc also can act as
an antioxidant and can stabilize membranes.

In a case study, Gordon & Hardigan [32] examined the

° ..¢(°~—<Y"' s
XS i .
o)\ e
° ° ¥ A o
' °° = PlasmaCells ™
e ~ v
Antibody

Adaptive Immunity

Immune System

Figure 1 | General mechanism illustrating the action of the immune system against viral infection. In sum-
mary, the immune system triggers innate and adaptive responses. The innate response represents the first
line of defense and consists of the release of chemical mediators and phagocytosis of the aggressive agent.
While the adaptive consists of the second defense's line of the immune system and is responsible for anti-
body production to neutralize the offending agent. Adapted from [1].
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Figure 2 | General scheme summarizing the role of Zn in the immune system against viral infection
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Figure 3 | General Scheme of antiviral activity of Cu. Copper can generate ROS that inhibit viral replication.
Adapted from [8, 35].
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effectiveness of Zn supplementation against COVID-I19.
They randomized some participants (n= 104), in a clinic, to
receive different doses (ranging from 10 to 50 mg) of Zn
daily. A control group (n=96) was used to examine the effect
of Zn supplementation on COVID-19 symptoms. All
participants were compared based on demographic data,
renal functions, vitamin D levels, clinical comorbidities,
blood counts, and symptoms after SARS-CoV-2 infection.
As a result, COVID-19 symptoms were significantly lower
among the treatment participants (1.9%) than control group
participants (10.4%), suggesting that Zn supplementation
may be vital against COVID-19, mitigating the severe
symptoms of SARS-CoV-2 infection. However, it is
important to highlight that the number of participants who
showed some symptoms of COVID-19 was small and that
more studies are needed to confirm this finding. In addition,
there is evidence that warns of the risk of side effects
involving high-dose Zn supplementation [33].

3.2 The role of copper in antiviral activity

Copper is another essential metal with important
immunoregulatory properties [34, 35]. In the human
immune system, Cu acts by assisting in the function of
neutrophils and macrophages, as well as improving the
activity of NKCs and stimulating T cells’ hematopoiesis [8].
In this sense, Cu also plays an important role against viral
infections, including SARS-CoV-2 [36]. An imbalance of Cu
homeostasis can result in abnormal cell function, affecting
adaptive and innate immunity, and increasing the
susceptibility to SARS-CoV-2 infection [35]. The adverse
effects of Cu insufficiency on immune function appear to be
pronounced in older people and infants. Although it is still
unclear how Cu deficiency alters the biological system, it is
known that Cu normalizes impaired immune functions by

“ ACE2 protein
LU L

modulating the blastogenic response of neutrophil activity to
T cell mitogens. In fact, Cu induces viral death via reactive
oxygen species (ROS), and in this sense, hydrogen peroxide
and Cu play vital roles [1, 8, 35]. Normally, ROS, including
superoxide anion, hydrogen peroxide, nitric oxide, and
hydroperoxide radical are present in the human body. The
enzyme SOD (superoxide dismutase) is responsible for
converting  superoxide  to  hydrogen  peroxide.
Physiologically, nitric oxide is an important vasodilator
produced by NOS (nitric oxide synthase). In a healthy
human, the imbalance of the ROS levels is associated with
the pathogenesis of many infections.

In this sense, evidence suggests that Cu supplementation
can help fight SARS-COV-2, especially in older people,
where Cu deficiency is a strong possibility. Cu can restore
the secretion and activity of IL-2. High levels of IL2 are
crucial for T cell proliferation and NK cell cytotoxicity [1].
In addition, other evidence suggests that Cu has properties
that can destroy the virus membranes (envelopes). Figure 3
shows a possible biochemical mechanism involving the Cu
element in case of viral infections, including SARS-CoV-2.

Recently, Clark & Taylor-Robinson [37] suggested sodium
copper chlorophyllin as a potential agent antiviral and
immunomodulator in SARS-CoV-2 infection. In another
study, after Cu supplementation, approximately 88% of
COVID-19 patients recovered [38]. In an in vitro study,
Rodriguez et al. [39] showed that Cu mitigated COVID-19
infection in Vero cells. However, further studies are needed
to confirm these findings.

3.3 Iron homeostasis during viral infection
Once Fe is responsible for the synthesis/replication of

genetic material, and cell proliferation, Fe is another element
with vital functions for both the virus and the host [40]. In

Proliferation and
survival for virus

Cyclin T1

Vs

CDK9

Tat¢

I—»

= looba

S’LTR Transcription

and replication

Capsid Exocytosis

‘imaturation
. w3
RNAexportM‘,\ v (3 ’

Figure 4 | General scheme illustrating the effect of Fe on viral infection The iron ion 519 is absorbed by the cell
through the DMT1. Sufficient levels of intracellular iron 520 support the proliferation and survival of the virus. For

further explanation, see the text. Adapted from [41, 43].
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Table 1 | Suggested supplementation of trace elements to promote vital function, as suggested from [9].

Trace elements Quantity/day for male (g)
Zn 11x10°
Fe 8x107
Cu 900 x 10°¢
Se 55x10¢
Mg 400x 103

the immune system, Fe participates in the reaction of oxygen
binding and electron transport, as well as in the production
and mechanism of action of the cytokine [41]. In this
scenario, the susceptibility to infection can be increased by
the imbalance of Fe homeostasis [42]. When there is a
deficiency of Fe in the body, the proliferation of lymphocytes
strongly decreases, as well as there is a reduction of antigens
[42]. On the other hand, excess Fe can improve virus
activity, increasing its mutation rates [40]. Fe-containing
enzymes are important for the virus to complete their
replication process. Figure 4 shows a biochemical
mechanism involving Fe in proliferation and survival of
virus [1, 40].

Through DMT1 (divalent metallic iron transport protein
1), Fe is absorbed by the cell [43]. ATP and Fe-containing
enzymes are required during this process. Nuclear factor
(NF-kB) can be activated by Fe, activating IxB kinase (IKK)
and generating ROS, which leads to the location of NF-kB in
the nucleus [1, 41, 43]. The long terminal 5 Krepetition
(LTR) which mediates the transcription of viral genes is
linked by (NF)-xB. Efficient replication of the virus involves
the transactivating protein Tat and its interaction partners
CDK9 and cyclin T1 that are regulated for Fe [1]. Therefore,
an adequate amount of Fe is required for the replication of
SARS-CoV-2. Under conditions of low cellular Fe, Tat-
mediated transcription is inhibited and CDK9 and cyclin T1
are dissociated [1].

In a recent study, Dahan et al. suggested ferritin, a cellular
protein that stores Fe, as a marker to evaluate the severity in
COVID-19 patients. For them, ferritin is a key molecule in
the immune system, which orchestrates the cellular defense
against inflammation during viral infection [44]. Lv et al.
also suggested that Fe metabolism parameters may be risk
factors and clinical biomarkers for COVID-19 prognosis
[45]. They reported that patients with low serum Fe status
likely suffered from severe conditions and multiple-organ
injuries during COVID-19. However, more studies are
required to confirm this evidence [45].

4. Role of others trace elements in antiviral activity

In addition to the trace elements above mentioned, other
elements can present several functions against infection of
SRAS-CoV-2 [9]. For instance, nickel (Ni) also is an
essential element with immunoregulatory function. There is
evidence that in the suggested quantity, Ni increases spleen
T and B cell activities and decreases NKCs activities [2]. In

Quantity/day for female (g)

8x1073

18x 107
900 x 10°°
55x10°
310x10°

addition, several studies have shown that selenium (Se)
deficiency is associated with altered mitochondrial electron
transport and, particularly, is associated with deficiency of
vitamin E, decreasing the antibodies response [46-48]. Thus,
Se supplementation also can increase the number of
antibodies [46]. Regarding Mg (magnesium), a low level of
this element results in decreased levels of antibodies (IgG
and IgM) in the blood, as well as decreased levels of T cells
and NK. Furthermore, Mg deficiency can activate latent
viruses; therefore, Mg supplementation should be
considered [49-51]. However, more data are needed to
confirm the Mg-mediated immunity. Another element that
has been shown to play an important role against viral
infection is lithium (Li) [52]. Evidence suggests that Li
inhibited both the fixation of the coronavirus and its
replication in the Vero cell. However, it was observed that its
efficiency depends on the dose [2]. For manganese (Mn), so
far there is not much information about its role in immune
activity against viral infection. Thus, further studies focusing
on this element are strongly recommended [53]. In addition,
there is evidence that exposure to toxic elements, such as,
arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb),
among others may be a risk factor, increasing susceptibility
to SARS-CoV-2 infection [2].

5 Nutritional importance of trace elements in available
treatment for SARS-CoV-2 infection

Treatments for SARS-CoV-2 infection are now widely
available [15, 17, 54]. For example, a variety of vaccines
produced by different technologies have been developed and
are being applied to prevent severe cases of COVID-19 [17,
54]. In the case of new variants, which may decrease the
protective efficacy of the vaccines and lead to severe
symptoms of the disease, some antiviral drugs, such as
molnupiravir (Merck °) and paxlovid (Pfizer®), have been
approved by FDA (Food and Drug Administration) to be
used in the treatment of SARS-CoV-2 infection [55,56]. Both
drugs are to be effective and safe against the severity of
COVID-19 [57]. Furthermore, monoclonal antibody
therapies (mAb) are available for patients ages 12 years or
older who are at high risk of becoming seriously ill [57, 58].
These Monoclonal antibodies are laboratory-made
molecules that act as substitutive antibodies, responding
more effectively to the virus. However, it is important to
emphasize that for the success of these treatments against
COVID-19 infection, micronutrients supplementation can
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be fundamental, as these elements can help in the
normalization of immune functions [2, 58]. In this sense, a
balanced diet, including essential elements, gives a clear
framework for a healthy life free from severe infections.
Table 1 shows a recommended diet of essential trace
elements to promote immune functions, as suggested by
Dharmalingam et al. [9].

The levels of trace elements can be estimated from serum/
whole blood samples, using powerful techniques capable of
quantifying trace elements in levels ranging from ng L-1 to
mg L-1. Atomic absorption spectrometry (AAS); inductively
coupled plasma-optical emission spectrometry (ICP-OES)
and inductively coupled plasma-mass spectrometry (ICP-
MS) are some examples of these powerful techniques. For
further information about the metallomics approach, see the
review [1, 59].

6. Concluding remarks

There is no doubt that trace elements play a fundamental
role in the immune system since they help to normalize
important components of the innate and adaptative
immunity against SARS-CoV-2 infection. Although some
biochemical mechanisms have been suggested to understand
metal homeostasis during viral infections, the relationship
between many trace elements, including Zn, Cu, Fe, Se, Ni
among others, is still complex. Thus, there is still a lot to be
explored to better understand the systemic effect of SARS-
CoV-2 infections in different organs.
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