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MicroRNAs (miRNAs) are a group of small RNAs with regulatory roles at post-transcriptional level. Although they have been clustered based 
on their sequence or structure similarities, there is still no effective method to determine their functional similarities due to the lack of miRNAs 
functional annotation. To address this critical need, we presented here a novel method for systematic study of functional similarities among 
human miRNAs by using their target genes GO semantic similarities. The functional similarities were validated by comparing with miRNA 
expression similarities. To extract the highly significant clusters, we used multi-scale bootstrap re-sampling in clustering miRNAs functional 
similarities. The clustering of human miRNAs based on target genes molecular function annotation led to 44 significant clusters. The cluster-
ing results were coherent with biological knowledge. Our analysis suggests that systematic clustering based on target genes GO semantic simi-
larities can aid to reveal the functional diversity of miRNA families. Additionally, this method can be extended to other species and used to 
predict novel miRNA functions. 
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1. Introduction 

MicroRNAs (miRNAs), approximately 22 nucleotides in 
length, are non-coding RNAs that play crucial roles in post-
transcriptional regulation. MiRNAs are evolutionarily con-
served, and generally transcribed by RNA polymerase II. 
MiRNAs perform their functions by RNA induced silencing 
complex (RISC), leading their target mRNAs to direct de-
structive cleavage or translational repression. MiRNAs are 
considered to represent one of the most important compo-
nents of the cell. They involve in many critical biological 
processes, including cell development and differentiation 
[1,2], proliferation [3], apoptosis [4], development [5], im-
mune system regulation [6,2], cancer progression [7], and 
virus-host interaction [8] and therefore represent potential 
targets for therapeutic applications. According to miRBase 
[9], the number of registered miRNA genes continues to 
grow rapidly. However, hundreds of recently identified miR-
NAs have unknown functions due to the lack of experimental 
strategy for systematic identification of their regulating tar-

gets. 
In order to better understand miRNAs, it is increasingly 

necessary to measure their functional similarity and thus to 
infer novel potential functions for miRNAs. Human miRNAs 
have been grouped into 46 families on the basis of hairpin 
sequences conservation by Rfam [10], and 60 families accord-
ing to pre-miRNAs sequence and secondary structures by 
using FOLDALIGN [11]. Many human clusters containing 
miRNAs without sequence homology was found [12] which 
indicating the current strategies for measuring miRNA simi-
larity have some flaws. Since miRNA-mRNA duplex allows 
mismatch, and target recognition only matches the 6-8nt long 
seed region, miRNAs with similar sequences and pre-
miRNAs with similar structures may have distinctive func-
tions. Therefore, a new method for measuring miRNAs func-
tional similarity is necessitated. 

Gene Ontology (GO) is the de facto standard for annota-
tion of gene products. The relationship of different genes was 
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organized as a directed acyclic graph (DAG), making it feasi-
ble for quantitative semantic comparisons. Measuring gene 
functional similarity based on GO has been widely used in 
novel GO annotations [13,14], gene function prediction [15] 
and similarity measurement [16,17], microarray analysis [18], 
cluster analysis [19,20], pathway analysis [21,22], and locali-
zation prediction [23]. The powerfulness of GO semantic 
similarity measurement has been verified in terms of the cor-
relations with sequence similarities [24], gene expression 
profiles [25], and protein-protein interactions [26]. However, 
it is impractical to measure miRNAs functional similarity 
directly due to the lack of GO terms annotation of most 
miRNAs and the lack of functional annotation database [27] 
since most miRNAs functions remain unknown. Fortunately, 
most of the genes miRNAs regulated are well annotated, 
making it possible for inferring functional similarity of miR-
NAs based on their targets. The functions of miRNAs can be 
inferred by GO enrichment analysis of their predicted targets 
were reported [28,29], which also indicating that the func-
tional similarity of miRNAs can be measured by quantitative-
ly calculating the similarity of their target genes. 

Here, we proposed a new method for systematic study of 
miRNAs functional similarity. The fundamental concept of 
our method is based on the functions of miRNAs targets GO 
semantic similarities. We validated our method by comparing 
it with miRNA expression similarity and showed that clus-
tered miRNAs have functional relatedness through co-
function of targeting genes. The similarities obtained by our 
method are consistent with biological knowledge of miRNA 
functional relationship. 

2. Material and methods 

2.1 Human microRNA target prediction 

Experimental identification of target mRNAs is difficult, 
and TarBase [30] currently lists only 1093 verified target 
mRNAs for 110 human miRNAs. Due to the lack of experi-
mental targets of miRNAs, we used computational method 
for miRNA genome-wide target prediction in this study, 
where target genes were predicted by the algorithm of Proba-
bility of Interaction by Target Accessibility (PITA) [31]. PITA 
uses a thermodynamic model for miRNA-mRNA interaction 
that was scored by an energy score, ∆∆G, which equals to the 
difference between the energy expended on opening the tar-
get site structure, ∆Gopen, and the energy gained by forming 
the duplex, ∆Gduplex. ∆∆G correlates well with the experi-
mentally measured degree of mRNA suppression were re-
ported [31].  

Human miRNAs were downloaded from miRBase, version 
12 [9] and human genome was downloaded from UCSC, 
version 18 [32] which corresponds to the human genome 
build 36.1 assembled by NCBI. We extracted 3' untranslated 
region (UTR) sequences in a single FASTA format file. For 
genes missing 3'-UTR annotation, 800bp downstream anno-
tated end of the coding sequence were used as the putative 
UTR. Since miRNA-target interaction requires unpairing of 

bases flanking the targets, we used a flank of 3 upstream and 
15 downstream nucleotides when performing prediction. To 
reduce false positive, the prediction results were narrowed 
down using the criteria of 7-8 bases seed length, no G:U wob-
ble or loops, no mismatch and conservation score of 0.9 or 
higher. To assign an overall miRNA-target score, we comput-
ed the statistical weight to sum all the ∆∆G generated by dif-
ferent sites bounded to the same miRNA as defined in 
formula 1. Finally we screened out the results by ∆∆G below -
10 kcal/mol. ∆∆G is an energetic score, and the lower its val-
ue, the stronger of miRNA-target binding. ∆∆G < -10 
kcal/mol is expected to be functional in endogenous miRNA 
expression levels. 

2.2 Human microRNA functional similarities measurement 

For measuring functional similarities among miRNAs, we 
used GO annotation of their target genes to define the simi-
larity index.  

Here, we developed an R package called GOSemSim [33], 
which implemented five methods proposed by Resnik [34], 
Lin [35], Jiang [36], Schlicker [37], and Wang [38] 
respectively, and was extended to support 19 species, 
including Anopheles, Arabidopsis, Bovine, Canine, Chicken, 
Chimp, Coelicolor, E coli strain K12 and Sakai, Fly, Human, 
Malaria, Mouse, Pig, Rhesus, Rat, Worm, Xenopus, Yeast, 
and Zebrafish. The program is freely distributed under GPL2 
and can directly be installed from Bioconductor. The manual 
and source code are available at http://bioconductor.org/pack 
ages/release/bioc/html/GOSemSim.html. Since GOSemSim 
package only supports Entrez Gene identifier for measuring 
similarities among human genes, we used Bioconductor 
package biomaRt [39] to query BioMart [40] databases for 
mapping RefSeq identifiers to Entrez Gene identifiers. 
Molecular function ontology was used to annotate target 
genes, and Wang method was used to calculate similarity. 
Wang method was based on GO graph structure, and 
outperformed other algorithms based on information content 
and thus being more consistent with human perspectives 
[38]. In order to give a single distance between two miRNAs, 
we combined similarity scores of multiple target genes as 
defined in formula 2. Similarities between two gene sets 
associated with two miRNAs form a matrix. The similarity of 
these two miRNAs is the average of maximum row scores and 
column scores. We used this strategy and finally obtained 
pairwise semantic similarities among human miRNAs. 

 
(2) 

 (1) 
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2.3 Hierarchical clustering uncertainty assessment 

The resulting similarity scores were then clustered by R 
package Pvclust [41]. When performing clustering, pvclust 
used multi-scale bootstrap re-sampling to estimate the uncer-
tainty of cluster analysis which has been popular in phyloge-
netic analysis. The agglomerative method, average linkage, 
was used, and 10,000 bootstrap replications were run, with 
relative sample size from 0.5 to 1.4, incrementing in steps of 
0.1, for testing p-values. For a cluster with approximately 
unbiased (AU) p-value > 0.95, the hypothesis with "the cluster 
does not exist" is rejected with significance level 0.05. Rough-
ly speaking, these clusters not only "seem to exist" attributed 
to sampling error, but be stably observed when we increase 
the number of observation [41]. All clusters in this study were 
extracted with p-value > 0.95. 

3. Results and Discussion 

We used PITA algorithm to predict human miRNA targets, 
followed by a strict criteria to control the FDR, and then 
measured miRNA functional similarity by GOSemSim pack-
age. As a result, we obtained the pairwise functional similarity 
of 533 miRNAs which was provided as Supplemental File 1. 
The pairwise functional similarity of human miRNA reper-
toire was shown in Figure 1. The full size of Figure 1 was 
provided as Supplemental File 2.  

 

 
Figure 1. Human miRNAs functional similarities. 

MiRNAs with high functional similarity may tend to have 
similar expression profiles. Taking miRNA functional simi-
larity in pairs against expression similarity should show a 
positive relationship. For further evaluating the quality of our 
result, we study the relationship of miRNAs functional simi-
larity and expression similarity. We used Pearson's correla-

tion coefficients to calculate miRNA expression similarity by 
using miRNA expression profiles of 345 miRNAs in 40 nor-
mal human tissues obtained from Liang's investigation [42]. 
We classified miRNA pairs into separate groups according to 
functional similarity values by a step of 0.1, and calculated the 
average of functional similarity and expression similarity of 
each group, and then measured the correlation of functional 
similarity with expression similarity (see Supplemental File 
4). As expected, functional similarity obtained by our method 
showed positive correlation with expression similarity (r = 
0.6055), in which the functions of miRNAs can partially be 
explained by their expression level (r2 = 0.3666). 

The pairwise miRNAs functional similarity matrix was then 
clustered by Pvclust package. We obtained 44 Pvclust clusters 
with AU p-value > 0.95, containing 401 miRNAs. The result 
of cluster analysis with high p-value highlighted was provided 
as Supplemental File 3. 

Many miRNAs were reported to be associated with diseas-
es. It has been reported that miRNAs implicated in similar 
disease often have similar functions [27]. In our results, 
miRNAs associated to similar diseases were more likely to be 
grouped in the same cluster. For instance, in cluster 23, hsa-
miR-215 [43], hsa-miR-221 [44], hsa-miR-194 [45], hsa-miR-
193b [46], and hsa-miR-429 [47] were all reported to be asso-
ciated with adenocarcinoma. In cluster 44, hsa-miR-453 and 
hsa-miR-219 [48], hsa-miR-93 [49] were reported to relate 
with breast cancer; while in cluster 29, hsa-miR-30a, hsa-
miR-150, hsa-miR-223, and hsa-miR-600 were implicated to 
relate with Lupus Vulgaris [50]. 

MiRNAs conserved in evolution may regulate the cardinal 
biological process cooperatively. We identified that these 
miRNAs are tend to cluster together. For example, in cluster 
24, hsa-miR-300, hsa-miR-495, hsa-miR-154, and hsa-miR-
496 were reported to be conserved in genomes of human, 
chimp, mouse, rat, dog, and cow [51]. In cluster 33, hsa-miR-
410, hsa-miR-377, hsa-miR-668, and hsa-miR-381 are con-
served in many mammalian genomes and believed to act 
cooperatively [51]. Transposable elements (TEs) contribute 
to the evolution dynamics of miRNAs. We found that hsa-
miR-325 and hsa-miR-545 derived from TE L2 [52] were 
grouped to cluster 30. 

Many mammalian viruses have been shown to modulate 
the expression of host cellular miRNAs [53]. MiRNA expres-
sion profiles altered by viruses form a novel regulatory layer, 
and these miRNAs can be grouped to partially reveal the 
cross-talk between host and virus. In our clustering result, 
hsa-miR-181a and hsa-miR-15a that were altered in stable 
hepatitis B virus expressing cell line [54] were identified in 
cluster 33. Hsa-miR-24 and hsa-miR-638 that were found to 
have expression changes during in vitro acute hepatitis C 
virus infection [55] were grouped in cluster 25. 

The clustering results obtained by our method were con-
sistent with many other investigations, suggesting that our 
method is reliable to calculate functional similarities and 
sensible to cluster miRNAs. The clustering results are useful 
to reveal functional diversity of miRNA families. 
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As described previously, the target genes of miRNA were 
predicted by PITA algorithm, and our current results were 
consistent with biological data. Therefore, we can predict 
novel miRNA functions by miRNA pairs with high similari-
ties or by the GO enrichment analysis of the corresponding 
miRNA cluster. For instance, we predicted novel miRNA 
functions with similarities above 0.8. Many of them were 
supported by newly published literature. For example, hsa-
miR-107 and hsa-miR-103 regulate lipid metabolism [56], 
hsa-miR-449 and hsa-miR-203 regulate pRb-E2F1 activity 
[57, 58], hsa-miR-200b and hsa-miR-429 regulate EGF-
driven invasion [59], etc. We also used the cluster infor-
mation to globally assign the predicted functions to novel 
miRNAs. GO enrichment analysis were performed in all 
miRNA clusters, and all the enriched GO terms represent 
each miRNA cluster with their corresponding p-values and 
other information were provided in Supplemental File 5. 
Here, we took cluster 23 as an example. After the hypergeo-
metric test, we select the over-represented  GO terms of target 
genes by p-value < 0.001. Consequently, we can identify 
miRNAs grouped in cluster 23 to have functions of repressing 
binding, especially the protein binding, metal ion binding 
and cation binding. Overall, the method presented in this 
study can be used to predict potential functions of newly 
identify miRNA and to discover potential miRNAs involved 
in important pathways. 

4. Concluding remarks 

In summary, we proposed a novel method for inferring the 
functional similarities of human miRNAs by integrating the 
information provided by miRNA target prediction algorithm 
PITA with Gene Ontology annotation data. The significant 
miRNA families were also analyzed. This method can be ex-
tended to measure miRNA functional similarities of other 
species. The current method relies on the prediction of target 
sites that may contain false positives as well as false negatives 
and thus may bring bias to some extent. However, target 
prediction algorithms are necessary when predicting func-
tions of newly identify miRNA. In the future, a more robust 
and reliable miRNA clustering may be obtained when com-
prehensive experimental miRNA-targets data are available. 
We believe that with the rapid increase of experimental miR-
NA-mRNA deposited in TarBase and the improvement of 
target prediction algorithms, our method will provide high 
quality miRNA similarity measurement with high sensitivity 
and specificity. 

5. Supplementary material 

Supplementary material regarding this manuscript is online 
available in the web page of JIOMICS. 

http://www.jiomics.com/index.php/jio/rt/suppFiles/21/0 
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