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Within a gene expression matrix, there are usually several particular macroscopic phenotypes of 
samples related to some diseases or drug effects, such as diseased samples, normal samples or 
drug treated samples. The goal of sample-based clustering is to find the phenotype structures or 
sub-structure of these samples. We present a novel method for automatically discovering clusters 
of samples which are coherent from a genetic point of view. Each possible cluster is characterized 
by a fuzzy pattern which maintains a fuzzy discretization of relevant gene expression values. 
Possible clusters are randomly constructed and iteratively refined by following a probabilistic 
search and an optimization schema. Evaluation of the proposed algorithm on publicly available 
microarray datasets shows high accuracy in spite of noise and the presence of other clusters. The 
results obtained support the appropriateness of using fuzzy logic to represent and filter gene 
expression values following an iterative approach. The proposed method complements our 
previous GENECBR system and both are freely available under GNU General Public License 
from http://www.genecbr.org/fpclustering.htm and http://www.genecbr.org/, respectively. 
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1. Introduction 

Following the advent of high-throughput microarray 
technology it is now possible to simultaneously monitor the 
expression levels of thousands of genes during important 
biological processes and across collections of related samples. 
In this context, sample-based clustering is one of the most 
common methods for discovering disease subtypes as well as 
unknown taxonomies. By revealing hidden structures in 
microarray data, cluster analysis can potentially lead to more 
tailored therapies for patients as well as better diagnostic 
procedures. 

From a practical point of view, existing sample-based 
clustering methods can be (i) directly applied to cluster 
samples using all the genes as features (i.e., classical 

techniques such as K-means, SOM, HC, etc.) or (ii) executed 
after a set of informative genes are identified. The problem 
with the first approach is the signal-to-noise ratio (smaller 
than 1:10), which is known to seriously reduce the accuracy 
of clustering results due to the existence of noise and outliers 
of the samples [1]. To overcome such difficulties, particular 
methods can be applied to identify informative genes and 
reduce gene dimensionality prior to clustering samples in 
order to detect their phenotypes. In this context, both 
supervised and unsupervised informative gene selection 
techniques have been developed. 

While supervised informative gene selection techniques 
often yield high clustering accuracy rates, unsupervised 
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informative gene selection methods are more complex 
because they assume no a priori phenotype information being 
assigned to any sample [2]. In such a situation, two general 
strategies have been adopted to address the lack of prior 
knowledge: (i) unsupervised gene selection, this aims to 
reduce the number of genes before clustering samples by 
using appropriate statistical models [3-5] and (ii) interrelated 
clustering, that takes advantage of utilizing the relationship 
between the genes and samples to perform gene selection and 
sample clustering simultaneously in an iterative paradigm.  

Following the second strategy for unsupervised informative 
gene selection (interrelated clustering), Ben-Dor et al. [6] 
present an approach based on statistically scoring candidate 
partitions according to the overabundance of genes that 
separate the different classes. Xing and Karp [1] use a feature 
filtering procedure for ranking features according to their 
intrinsic discriminability and irredundancy to other relevant 
features. Their clustering algorithm is based on the concept of 
a normalized cut for grouping samples in new reference 
partition. von Heydebreck et al. [7] and Tang et al. [8] 
propose algorithms for selecting sample partitions and 
corresponding gene sets by defining an indicator of partition 
quality and a search procedure to maximize this parameter. 
Varma and Simon [9] describe an algorithm for automatically 
detecting clusters of samples that are discernable only in a 
subset of genes. They use iteration between Minimal 
Spanning Tree based clustering and feature selection to 
remove noise genes in a step-wise manner while 
simultaneously sharpening the clustering. 

In this article we improve a previous initial work [10] by 
providing i) a complete mathematical formulation of the 
proposed method, ii) an evaluation of our method using two 
real datasets, herein referred as HC-Salamanca dataset [11] 
and Armstrong dataset [12] (see Sections 3.1 and 3.2 for a 
detailed description of these datasets), and iii) a comparison 
of the results obtained by the proposed method against the 
ones obtained by the standard hierarchical clustering 
algorithm for the same datasets. As introduced in [10], our 
clustering technique is based on the notion of genetic 
coherence of the each cluster, and this “coherence” is 
computed by taking into consideration the genes which share 
the same expression value through all the samples belonging 
to the cluster (which we term a fuzzy pattern or FP in short), 
but discarding those genes present due to pure chance (herein 
referred to noisy genes of a fuzzy pattern). The proposed 
clustering technique combines both (i) the simplicity and 
good performance of a heuristic search method able to find 
good partitions in the space of all possible partitions of the set 
of samples with (ii) the robustness of fuzzy logic, able to cope 
with several levels of uncertainty and imprecision by using 
partial truth values. 

2. Material and methods 

2.1 Overview of the proposed method. 

As mentioned above we propose a simulated annealing-
based algorithm for iterative class discovery. It uses a novel 

fuzzy logic method for informative gene selection. The 
interrelated clustering process carried out is based on an 
iterative approach in which possible clusters are randomly 
constructed and evaluated by following a probabilistic search 
and an optimization schema. Our clustering technique is not 
based on the distance between the microarrays belonging to 
each given cluster, but on the notion of genetic coherence of 
the own clusters. The genetic coherence of a given partition is 
calculated by taking into consideration the genes which share 
the same expression value through all the samples belonging 
to the cluster (we term this a fuzzy pattern), but discarding 
those genes present purely by chance (or noisy genes of a 
fuzzy pattern). The global view of the proposed method is 
sketched in Figure 2 and following sections give details about 
the mathematical background and proposed algorithm. 

2.2 Fuzzy discretization and fuzzy pattern construction. 

A fuzzy pattern is based on the fuzzy discretization given by 
three membership functions which are associated with each 
probe set in the microarray. Basically, for each probe set we 
consider three linguistic labels (Low, Medium and High levels 
of gene expression), each one associated with a polynomic 
function. Given a fixed value for the θ parameter (θ defines 
the threshold for the membership function from which a 
linguistic label is activated), the different labels are only 
activated in specific intervals within the whole range of 

 

Figure 2. Overview of the iterative class discovery method. This figure 
shows how, from the fuzzy discretization of the microarrays from raw 
dataset, the method performs a stochastic search, looking for a “good 
partition” of microarrays in order to maximize the genetic coherence 
of each one cluster within the tentative partition. The simulated 
annealing technique is used to implement this search. 
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variation of a gene’s expression level as shown in Figure 3. 
 For a specific probe set and a given value of the θ 

parameter, the label assigned to the gene’s expression level in 
a probe will be one of the following alternatives: 

� one of the three basic labels (LOW, MEDIUM and 
HIGH), if the numeric value is in only one of the 
associated intervals,  

� one of the two combined labels (LOW-MEDIUM or 
MEDIUM-HIGH), if the numeric value is at the 
intersection of two intersections,  

� the empty label, if the numeric value is in an interval 
where none of the labels are activated for the selected θ 
parameter. 

Therefore, for each gene probe set we are considering a 
universe of six possible symbols: ‘Low’ (L), ‘Low-Medium’ (L-
M), ‘Medium’ (M), ‘Medium-High’ (M-H), ‘High’ (H) and ‘*’ 
(empty), herein denoted by S = {s1, s2, s3, s4, s5, s6} where sj 
maps the j-th symbol in the list given above. 

Once the discretization of the whole microarray dataset D 
has been completed, given a subset of m microarrays, Dm = 
{x1, x2, …, xm} ⊆ D, which represents any target concept (a 
class within a classification or a group in a clustering), its 
associated fuzzy pattern is constructed by selecting those 
linguistic labels which are different to the empty label and 
have a relative appearance frequency in set Dm equal to or 
greater than the predefined ratio given by the π parameter 
(with 0 < π ≤ 1). Formally, for a specific gene gj (1 ≤ j ≤ N, 
where N is the number of probes in the microarray), the 
appearance frequency of any symbol s ∈ S in the set Dm, freqj 

(s), can be computed according to the following expression: 
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Then, the gene gj (with the label associated with the most 

frequent symbol smf) is selected as a candidate for the fuzzy 
pattern only if the most frequent symbol is different from the 
empty label and its appearance frequency is at least equal to 
the π parameter, namely, freqj (smf) ≥ π. Therefore, the 
parameter π controls the degree of exigency for selecting a 
gene in the fuzzy pattern, since the higher the value of the π 
parameter the fewer the number of genes which form the 
fuzzy pattern associated to the target concept Dm. 

Basically, our assertion is that a fuzzy pattern is able to 
capture the meaningful genes of any group of microarrays 
which are coherent from a genetic point of view. The 
underlying hypothesis is that any subtype of a given disease 
must necessarily have an internal genetic coherence, namely, 
those microarrays belonging to patients which suffer from 
one specific subtype, should share a large number of genes 
(i.e., present a similar expression level in a large number of 
genes, at least, more than if the microarrays come from 

patients with different subtypes of the same or a different 
disease). This fact has been empirically observed in previous 
experiments carried out with our GENECBR platform, a 
translational tool for multiple-microarray analysis and 
integrative information retrieval for aiding diagnosis in 
cancer research, when we studied the differences between the 
number of genes in the FP belonging to well and not well-
defined pathologies [13-15]. This circumstance supports the 
development of new approaches able to take advantage of this 
situation. The underlying idea is that if this behaviour is 
observed in well-known and well-characterized classes of a 
disease, it must also be true in unknown groups representing 
new subtypes of the disease. Therefore, these newly 
discovered classes must be characterized by having a large 
number of genes in their associated fuzzy patterns. As a 
consequence, this situation can be used to consider the 
problem of clustering microarrays in terms of maximizing the 
number of genes in the fuzzy pattern associated with each 
cluster. 

A key issue is the setting-up process of the parameters θ 
and π, since the computation of fuzzy patterns is high 
sensitive to these values. Although for different learning tasks 
(prediction or supervised classification), in previous works 
[13-14], a cross-valitation strategy was used to set up these 
parameters for the same two datasets tested in this work and 
then, those values has been also used in the experimental 
section of this work.  

2.3 Noisy genes identification. 

Now, working with a set of m microarrays, we are 
interested in the estimation of the probability that a specific 
gene, gi, of the n available in a microarray, may appear in a 
fuzzy pattern merely by chance. First of all, we need an 
estimation of the occurrence probability of each symbol in 
the fuzzy discretization of numeric data, namely, p(S) = 
(p(s1), p(s2), p(s3), p(s4), p(s5), p(s6)). Given a fixed θ, these 
probabilities can be estimated by the ratio of the length of 
each interval (associated to the labels) and the length of the 
whole variation range, ∆ = cH – cL + λH + λL (see Figure 3). 

 

Figure 3. Membership functions and activation regions. This figure 
illustrates the three membership functions for a specific probe and 
shows the cut points which determine the length of the segment of 
each fuzzy expression level within the probe domain. 
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Since the membership functions are polynomic, the length of 
each interval can be computed in a closed form. For example, 
the cut points of the membership function for the ‘Medium’ 
label with the line µM(x) = θ, is given by: 

 

1,2 ( )M Mx c δ θ= ±
 

 
Where: 

( )
1

2

2

if 0.5 1

if 0 0.5
( )

1

M

M

M

θ

θ

θ

θ

λ
δ θ

λ

− ≤ ≤

≤ <


= 

−  
 
In this way, the probabilities of each symbol in S can be 

computed, and obviously, their sum is equal to 1. 
In a second step, having an estimate of the probability of 

each possible symbol, we need to assess the probability that 
the gene gi appears in the fuzzy pattern associated with a 
sample of m microarrays with a minimum frequency ratio 
equal to π. Under these conditions, in order to include the 
gene in the fuzzy pattern it is necessary that in the set of m 
microarrays, it must have at least mπ ⋅   repetitions of the 
same symbol in their associated fuzzy representations. The 
empty label (with symbol ‘*’) must be excluded since it 
reflects that none of the labels are activated and therefore, it 
never can be part of a fuzzy pattern. By p(k) we denote the 
probability that a valid label (all except the ‘*’ symbol), 
appears exactly in k discretized values (of the m available). It 
can be shown that this probability is given by: 
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Where Cm

k is the number of ways of picking k unordered 
outcomes from m possibilities, and p(sj)k(1 – p(sj))m–k stands 
for the probability that symbol sj appears k times in a 
sequence of m symbols. 

Therefore, the probability that a gene gi appears in the fuzzy 
pattern which is associated with a sample of m microarrays, is 
given by the sum of individual probabilities that any symbol 
appears, at least, mπ ⋅   times. This probability can be 
calculated by means of the following expression:  
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Where p(gi) is upper bound by 1, being closer to 1 

depending on the distribution probability of each gene and 
without taking account of the degree of exigency imposed by 
π. For example, assuming that the probability of the empty 
label is null, the probability is closer to one as there is a 

predominant symbol (a symbol with occurrence probability 
close to 1), whereas the worst case is represented by the 
situation where all the valid symbols have the same 
probability of occurrence. 

Finally, assuming that, in the random case, the selection of 
a gene gi is independent of the selection of another one gj (j ≠ 
i), the number of noisy genes due to the chance for a group of 
m microarrays with N probes at the levels imposed by θ and π 
parameters, is given by: 
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Where ng(m, θ, π) is upper bound by N, although this value 

is only reachable in the ideal case where only one symbol has 
probability 1 for all of the genes. 

As the uncertainty decreases (there is a predominance of 
one expression level over the other ones for all the genes in 
the available set of microarrays) the number of ng(m, θ, π) 
decreases (the amount of information encoded by the data 
also decreases and then, there are more irrelevant genes). 
When uncertainty increases, the amount of information also 
grows and more genes are necessary to distinguish samples in 
absence of other information. Figure 4 illustrates the 
variation of noisy genes depending on the θ, and π 
parameters. 

 

Figure 4. Noisy genes vs. Theta (θ ) and Pi (π ) parameters (m = 43 
samples, n = 22,283 genes). This figure shows the variation in the 
number of noisy genes depending on the θ and π parameters of a 
fuzzy pattern for the HC-Salamanca dataset. For a fixed value of 
parameter θ, the number of noisy genes decreases exponentially 
when the π parameter grows (since the prior probability that a gene 
appears in the fuzzy pattern also decreases). For a fixed value of 
parameter π, the maximum number of noisy genes is symmetrically 
distributed around θ = 0.5 (since the prior probability of each 
linguistic label in a fuzzy pattern is nearly equiprobable). 
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2.4 The cost function of a cluster 

The cost function must combine two factors: (i) the 
number of genes in the fuzzy pattern associated with each 
cluster of the partition and (ii) the size of each such cluster. 
The first factor in the cost function models the genetic 
coherence of a cluster. Accepting this hypothesis, it is 
expected that for clusters with equal sizes, the number of 
genes in a fuzzy pattern will be greater if the genetic 
coherence of the cluster is higher. The second factor is 
relevant since it has been experimentally observed that 
meaningful genes in large clusters (after noisy genes have 
been filtered out) are several orders of magnitude smaller 
than meaningful genes computed in small clusters. This fact 
is reasonable because it will be more probable when the 
number of possibilities is also further reduced. Therefore, the 
size factor in the cost function is needed for examining 
comparable clusters of different size. 

Under these assumptions, given the available set of 
microarrays denoted by X, and a partition P = {g1, g2, …, gk } 
of X in k clusters, that is to say, gi ⊆ X with 1 ≤ i ≤ k, gi ∩ gj = 
∅ (if i ≠ j) and ∪gi = X, the cost of a cluster gi ∈ P is given by: 
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Where |gi| is the number of microarrays in cluster gi, |fp(gi, 

P, θ, π)| is the size (in genes) of the fuzzy pattern associated 
with the group gi with regard to the classification given by P 
and for specific values of the θ and π parameters, and ng(|gi|, 
θ, π) is the number of noisy genes of a group with |gi| 
microarrays. Finally, N is the fixed number of probes in a 
microarray. Therefore, if one tries to minimize the defined 
cost of a group, cost(gi), it involves trying to maximize both 
(i) the size of the cluster and (ii) its genetic coherence 
(measured by the number of genes belonging to its fuzzy 
pattern). 

Finally, the cost of a given partition P = {g1, g2, …, gk} of X is 
defined by the sum of the individual costs of each group: 
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Once the cost of a tentative partition of microarrays has 

been established, one needs to define an algorithmic strategy 
in order to automatically build random partitions from the 
set of available microarrays. 

2.5 Algorithm 

There are certain optimization problems that become 
unmanageable using combinatorial methods as the number 
of objects becomes large. The simulated annealing technique 
which can be regarded as a variant of a local search was first 
introduced by Metropolis et al. [16], and then used in 
optimization problems by Kirkpatrick et al. [17] and Cěrny 
[18]. For these problems, the simulated annealing method 

represents a very effective practical algorithm. Although this 
technique is unlikely to find the optimum solution, it can 
often discover a very good one even in the presence of noisy 
data. 

Simulated annealing improves its behaviour through the 
introduction of two tricks. The first one is the so-called 
Metropolis algorithm [16], in which some poor solutions are 
accepted when they serve to allow the solver to explore more 
of the possible solution space. Such bad solutions are 
tolerated using the criterion that: 

 
- /   (0,  1)D Te U∆ >  

Where ∆D is the variation of the cost function for the 
current solution and the best one, T stands for a synthetic 
temperature and U(0, 1) is a random number in the interval 
[0, 1]. The cost function D corresponds to the free energy in 
the case of annealing a metal (in which case the temperature 
parameter would actually be the kT, where k is Boltzmann's 
Constant and T is the physical temperature in the Kelvin 
absolute temperature scale). If T is large, many bad solutions 
are accepted and a considerable part of the solution space is 
accessed. The next solutions to explore are randomly 
constructed, though more sophisticated techniques can be 
used. 

The second trick is, again by analogy with the annealing of 
a metal, to lower the temperature. After making many 
changes in the current solution and observing that the cost 
function declines only slowly, one lowers the temperature 
limiting while the size of allowed bad solutions. After 
lowering the temperature several times to reach a smaller 
value, one may then "quench" the process by accepting only 
good solutions in order to find the local minimum of the cost 
function. There are various annealing schedules for lowering 
the temperature, but the results are generally not very 
sensitive to the details. These general ideas are the basis of 
simulated annealing but a comprehensive introduction to the 
subject can be found in [19]. 

The application of our simulated annealing approach to 
cluster microarrays is sketched in Figure 5. First of all, we 
consider a pool which contains the set of m microarrays that 
must be clusterized into k different and unknown groups. In 
the final solution, some microarrays can stay in the pool 
without being associated with any cluster. Initially, a first 
solution to the problem (a partition of microarrays) is 
randomly constructed. All the microarrays of the pool are 
randomly distributed among k classes, where k is the desired 
number of clusters in the partition (the whole set of m 
microarrays are spread proportionally among the k clusters 
and the pool). 

At every step, a neighbour solution is determined by 
choosing one from the following alternatives (see Figure 6 for 
the details): 

• Moving a randomly chosen microarray from the 
pool to a cluster (perhaps empty). 
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• Moving a randomly chosen microarray from a 
cluster to the pool. 

• Exchanging randomly chosen microarrays among 
clusters. 

• Exchanging randomly chosen microarrays among a 
cluster and the pool. 

• Moving a randomly chosen microarray from one 
cluster to another cluster. 

The neighbour solutions of lower cost obtained in this way 
are always accepted, whereas those solutions with a higher 
cost are accepted with the following probability: 

/( )i iPr T T δ= +  

Where δ is the cost difference among the new solution and 
the old solution, and Ti (i = 0, 1, …) represents the 
temperature of annealing which drops from a value T0 (the 
cost of the initial solution) according to the formula Ti+1 = Ti 
• α, where α < 1. Pr implies that large increases in the 
solution cost (uphill moves) are more likely to be accepted 

when Ti is high. As Ti approaches zero most uphill moves are 
rejected. 

The general algorithm stops if equilibrium is encountered. 
We define that equilibrium is reached if, after 50 stages of 
temperature reduction, the best achieved solution can not be 
improved. In contrast to the classical approach in which a 
solution to the problem is taken as the last solution obtained 
in the annealing process, we memorize the best solution 
found during the whole annealing process (Cf. lines 13-15 in 
Figure 5). Moreover, at the beginning of each temperature 
epoch, the search is restarted from the best solution reached 
at the moment (Cf. line 6 in Figure 5). 

Summing up, the proposed annealing algorithm performs 
the local search by sampling the neighbourhood randomly. It 
attempts to avoid becoming prematurely trapped in a local 
optimum by sometimes accepting low-grade solutions. The 
acceptance level depends on the magnitude of the increment 
of the solution cost and on the spent search time. By this 
reason, and specially, at initial stages, when the temperature 

 Input:  
→ microarray dataset (pool of m microarrays) to be grouped in an unsupervised way 
→ number of clusters (k) 

 Output: 
← partition of the original dataset into k clusters 

 Require: 
next_solution routine  
cost function 

 Steps: 
1 current_solution = initial partition {Builds randomly a partition of k clusters with the microarrays in the pool}  
2 best_solution = current_solution {initialize the best partition built at the moment} 
3 equilibrium_counter = 0 {initialize the counter which controls the annealing epochs without improvement of the best found 

solution} 
4 T = cost(current_solution) {initial temperature of the annealing process} 
5 repeat 

6 current_solution = best_solution {The annealing epoch starts from the best partition at the moment} 
7 for iteration_counter = 1 to m do {An annealing epoch is made up of m attempts, where m is the number of microarrays in 

the pool} 
8 new_solution = next_solution(current_solution) {Builds a new partition from the current one} 
9 δ = cost(new_solution) – cost (current_solution) {Computes the difference in cost of the new partition and the current 

partition} 
10 x = u(0, 1) {Generate random x uniformly in the range (0, 1)} 
11 if ( δ < 0 ) or ( x < T / (T+δ) ) then {Accept a new solution if it improves the cost or increases the cost but it has a high 

probability of acceptance, the term T /(T+δ) which depends on the current temperature and the difference of the costs}  
12 current_solution = new_solution {update the current solution} 
13 if ( cost(new_solution) < cost (best_solution) ) then {if new partition improves best partition at the moment } 
14 best_solution = new_solution {update best partition} 
15 equilibrium_counter = 0 {reinitialize the equilibrium counter} 
16 T = T · α {Decrease current temperature multiplying by a constant rate α = 0.95} 
17 equilibrium_counter = equilibrium_counter + 1 {increment the number of epochs without improvement} 
18 until equilibrium_counter > 50 {stop the annealing process when a stationary state is reached, at least 50 epochs without 

improvement} 

Figure 5. General pseudo code of simulated annealing-based clustering algorithm. This algorithm explains the steps involved in partitioning a 
microarray dataset into k clusters by grouping microarrays which maximize its genetic coherence (assessed in terms of the number of genes in 
their associated fuzzy pattern), using a simulated annealing search algorithm. 
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is high, it has no sense to set the initial solution with a 
“reasonable” solution (for example, computed by a simple 
clustering algorithm) because the algorithm perhaps will be 
accept other solutions quite different from the original one, 
since the goal of the algorithm is to perform a global 
exploration of the search space. Only when the search process 
progresses, the exploitative component of the algorithm 
dominates over the explorative component, performing a 
local search around the selected local optimum after these 
intial stages. Obviously, the convergence time of the the 
proposed algorithm is higher than other deterministic 
clustering algorithms, but these algorithms have no capability 
to escape from local optima. Moreover the computational 
effor of the proposed clustering technique (up to several 
hours of running time per execution) since the evaluation of 
the cost function requires the computation of a fuzzy pattern 
for each cluster in the current partition.     

3. Resutls and Discussion 

3.1 The HC-Salamanca dataset 

This dataset consists of bone marrow samples from 43 
adult patients with de novo diagnosed acute myeloid 
leukemia (AML) – 10 acute promyelocytic leukemias (APL) 
with t(15;17), 4 AML with inv(16), 7 monocytic leukemias 
and 22 nonmonocytic leukemias, according to the WHO 
classification. All samples contained more than 80% blast 
cells and they were analyzed using high-density 
oligonucleotide microarrays (specifically, the Affymetrix 
GeneChip Human Genome U133A Array) [11]. In [11], 

hierarchical clustering analysis segregated APL, AML with 
inv(16), monocytic leukemias and the remaining AML into 
separate groups, so we consider this partition as the reference 
classification for validating our proposed technique in the 
following experimentation. The results of the proposed 
algorithm with this dataset are depicted in Figure 7. 

Figure 7 shows for each available microarray the percentage 
of the times it has been grouped together with other 
microarrays belonging to the reference groups (APL, AML 
with inversion, Monocytic and Other AML) in the ten 
executions of the whole algorithm. 

As can be seen in Figure 7, each sample has a different 
percentage of membership to each one of the reference 
groups. From this representation it can also be seen that the 
APL group is the most promising cluster since the algorithm 
has clustered together (in an unsupervised way) the majority 
of samples from this class in its ten executions. This result is 
consistent with the fact that this pathology is the best 
characterized class among the AML subtypes and, therefore, 
there is a high probability that microarrays within this 
subtype are well labelled in the reference classification. The 
Other-AML category seems to be another class, at least 
different from other clusters except the AML with-inversion 
group. This is the uncertain subtype of AML, since it contains 
those samples which are not classified within other groups. In 
the same way that the Other-AML group (but to a lesser 
degree), the monocytic leukemias seem to be another possible 
group. Finally, the AML with inversion is the most doubtful 
class since samples from this group are misclassified among 
the Other-AML and monocytic groups. This fact can be due 

 Input: 
→ current partition of the original microarray dataset (current_solution) 

 Output:  
← neighbour partition which is built from the input current_solution by randomly choosing one of five possible movements of 
microarrays between clusters 

 Require: 
- 

 Steps: 
1 new_solution = current_solution {The new partition is built from the current partition}  
2 Choose randomly two different clusters of new_solution, c_i and c_j 
3 Select randomly three microarrays: m_i, m_j and m_k, belonging to c_i, c_j and the pool, respectively 
4 u01 = u(0, 1) {Generate random u01 uniformly in the range (0, 1)} 
5 if ( u01 < 0.2 ) then   
6  move microarray m_i (from cluster c_i) to the pool 
7 if ( 0.2 ≤ u01 < 0.4 ) then   
8  move microarray m_k (from pool) to cluster c_i 
9 if ( 0.4 ≤ u01 < 0.6 ) then   
10  exchange microarray m_i (from cluster c_i) with microarray m_j (from cluster c_j) 
11 if ( 0.6 ≤ u01 < 0.8 ) then   
12  exchange microarray m_i (from cluster c_i) with microarray m_k (from pool) 
13 if ( 0.8 ≤ u01 ≤ 1 ) then   
14  move microarray m_i (from cluster c_i) to cluster c_j 
15 return new_solution 

Figure 6. Pseudo code of new_solution function. This algorithm explains the steps involved in building a neighbour partition from the current 
partition by randomly choosing one of the five possible operations. 
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to the reduced number of available samples or to the lack of 
genetic coherence within this group, since the classification of 
these samples was performed by examining the karyotype by 
an expert. 

The percentage of times (on average) in which microarrays 
of each reference cluster have been grouped together with 
microarrays belonging to different classes is shown in each 
row of Table 1. 

Table 1 can be interpreted as a confusion matrix 

numerically supporting the facts commented above, since the 
APL and Other-AML groups are the better identified 
pathologies (in an average percentage of 76.19% and 77.12% 
for all their samples and runs of the algorithm), followed by 
the monocytic leukemias (with an average percentage of 
51.73%). As mentioned above, the AML with-inversion group 
is confused in a mean percentage of 33.66% and 32.06% with 
samples from monocytic and Other-AML groups, 
respectively.  

If we consider that the highest percentage for each 
microarray determines the cluster to which it belongs, the 
final clustering obtained by our simulated annealing-based 
algorithm is shown in Table 2. 

Assuming as “ground truth” the clustering given by 
experts, the performance of the clustering process can be 
tested by comparing the results given in both tables. 

Some commonly used indices such as the Rand index and 
the Jaccard coefficient [20] have been defined to measure the 

 
Figure 7. Degree of affinity of microarrays from the HC-Salamanca dataset with regard to the reference groups. The radial chart shows the 
same number of graphs as groups in the reference clustering. Each graph indicates the percentage of times in which a given microarray has 
been clustered with other microarrays in a reference cluster. As can be observed, the APL and Other-AML clusters are clearly differentiated, 
only the samples Other-10232 and APL-10222 have the highest percentage less than 50%, whereas Other-00139 is mainly grouped with 
samples in the APL group. The monocytic group is identified to a lesser degree but can still be differentiated. Samples from the AML with 
inversion group are confused with those belonging to the monocytic and Other-AML groups. Results are coherent with the hierarchical 
clustering reported in [11]. 
 

Table 1. Confusion matrix for the HC-Salamanca dataset. 

  Predicted class 

  APL Inv Mono Other 

True 
 class 

APL 76.19% 2.71% 2.18% 18.92% 

Inv 7.79% 26.49% 33.66% 32.06% 

Mono 3.11% 17.81% 51.73% 27.35% 

Other 8.62% 5.56% 8.70% 77.12% 
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degree of similarity between two partitions. For the clustering 
given by our experiments, the Rand index was 0.90 and the 
Jaccard coefficient was 0.77.  

In order to compare with other standard methods, a new 
clustering has been computed using the hierarchical 
clustering algorithm (with k = 8, an average linkage strategy, 
and without any low-variance filter).  In order to compute the 
Rand index and Jaccard coefficient with regard to this 
reference partition, a final partition has been computed 
assigning to each sample in a cluster the reference label which 
is the most frequent in the cluster. This final clustering 
obtained from the original results of the hierarchical 
clustering algorithm for the HC-Salamanca dataset is shown 
in Table 3. 

In this case, the computed Rand index is 0.79 (against 0.90 
of our proposal) and the Jaccard coefficient is 0.53 (against 
0.77). Besides the worse behavior of the hierarchical 
clustering algorithm from a quantitative viewpoint (derived 
from the values of these two indexes), it can be observed from 
Table 3 that hierarchical clustering algorithm and our 

algorithm agree that the Other-00139 sample is very similar 
to the APL samples, but hierarchical clustering algorithm 
does not distinguish clearly among samples from monocyte, 
with-inversion and other groups.   

3.2 The Armstrong dataset 

In [12] the authors proposed that lymphoblastic leukemias 
with MLL translocations (mixed-lineage leukemia) constitute 
a distinct disease, denoted as MLL, and show that the 
differences in gene expression are robust enough to classify 
leukemias correctly as MLL, acute lymphoblastic leukemia 
(ALL) or acute myeloid leukemia (AML). The public dataset 
of this work, herein referred to as the Armstrong dataset, has 
been also used to test our proposal. The complete group of 
samples consists of 24 patients with B-Precursor ALL (ALL), 
20 patients with MLL rearranged B-precursor ALL (MLL) 
and 28 patients with acute myeloid leukemia (AML). All the 
samples were analyzed using the Affymetrix GeneChip U95a 
which contains 12600 known genes. 

The results of the proposed clustering algorithm working 
with this dataset are shown in Figure 8. As in the previous 
examples, Figure 8 shows the percentage of times that each 
available microarray has been grouped together with other 
microarrays belonging to the reference groups (ALL, AML 
and MLL) in the ten executions of the algorithm. 

The percentage of times (on average) in which microarrays 
of each reference cluster have been grouped together with 
microarrays of different classes is shown in Table 4. These 
percentages can be considered as an estimation of the 
overlapping area of the membership functions of any two 
potential groups in the sector associated to a true class. 

As can be seen in Figure 8 (by analyzing the overlapping 
areas of membership graphs in the associated sectors to each 
one of the reference groups) the AML group is clearly 
distinguished from the ALL and the MLL groups (the 
confusion with regard to the ALL group is marginal being 
slightly larger with regard to the MLL group). The ALL group 
is clearly differentiated from the AML group. The main 
component of confusion in this group is from the MLL group 
(showing a clear overlap of the MLL and ALL membership 
graphs in the sector associated with the true ALL samples). 
Finally, the MLL can be distinguished to a lesser extent with 
respect to the other groups, the sources of confusion, in 
decreasing order, being the ALL and AML groups, 
respectively. 

Therefore, the above assertions based on the interpretation 
of Figure 8, are numerically supported by the results shown 
in Table 4. 

As in the HC-Salamanca dataset, if the highest percentage 
for each sample determines the cluster of the microarray, the 
final clustering obtained by our simulated annealing-based 
algorithm is shown in Table 5. 

As in the previous experiment, assuming the clustering 
given by experts is the “ground truth”, the performance of the 
clustering process can be examined by comparing the results 
given in both tables. In this case, the Rand index and the 
Jaccard coefficient for experiments carried out are 0.89 and 

Table 2. Final clustering for the HC-Salamanca dataset. 

APL APL-05204, APL-10222, APL-12366, APL-13058, APL-
13223, APL-14217, APL-14398, APL-16089, APL-

16739, APL-17074, Other-00139 

Mono Inv-00355, Inv-10891, Mono-06667, Mono-09949, 
Mono-12361, Mono-13701, Mono-13774, Mono-13850, 
Mono-14043 

Other Inv-00185, Inv-07644, Other-00170, Other-06209, 
Other-07297, Other-09376, Other-09875, Other-10232, 
Other-10557, Other-11567, Other-12570, Other-13296, 
Other-13451, Other-14399, Other-14698, Other-14735, 
Other-15443, Other-15833, Other-16221, Other-16942, 
Other-16973, Other-17099, Other-17273 

 
Table 3. Final clustering computed from the results of the 
hierarchical clustering algorithm for the HC-Salamanca dataset. 

APL APL-05204, APL-10222, APL-12366, APL-13058, 
APL-13223, APL-14217, APL-14398, APL-16089, 

APL-16739, APL-17074, Other-00139 

Mono Inv-00185, Inv-00355, Inv-07644, Inv-10891, 
Mono-06667, Mono-09949, Mono-12361, Mono-
13701, Mono-13774, Mono-13850, Mono-14043, 

Other-10232, Other-10557, Other-13451, Other-

15443, Other-15833 

Other Other-00170, Other-06209, Other-07297, Other-
09376, Other-09875, Other-11567, Other-12570, 
Other-13296, Other-14399, Other-14698, Other-
14735, Other-16221, Other-16942, Other-16973, 
Other-17099, Other-17273 
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0.72, respectively. These indices are comparable to those 
obtained with the HC-Salamanca dataset. Moreover, if we 
assume a binary classification (considering the ALL and MLL 
groups as a unique partition of the lymphoblastic leukemias, 
the results are improved to 0.95 for the Rand index and 0.90 
for the Jaccard coefficient, which are very close to the perfect 
match in a situation where the reference groups are also 

completely consistent.  
The hierarchical clustering algorithm (with k = 9, an 

average linkage strategy, and without any low-variance filter) 
was also executed to compute another clustering. As in 
previous section, from the original results of the hierarchical 
clustering algorithm, a final partition was built considering 
the most frequent reference label in a cluster to assign it to 
each sample in this cluster. The final clustering for the 
Armstrong dataset and computed from the original results of 
the hierarchical clustering algorithm are shown in Table 6.  

In this case, the Rand index is 0.84 (against the 0.89 of our 
proposal) and the Jaccard coefficient is 0.64 (against 0.72), 
which reveal a worse behaviour of the hierarchical clustering 
algorithm against our clustering technique with regard to the 
reference partition given by the experts. From Table 6 it can 
be also observed that our clustering technique and the 

 
Figure 8. Degree of affinity microarrays from the Armstrong dataset with regard to the reference groups. The radial chart shows three 
membership graphs (one for each reference group) in the domain of available microarrays in the Armstrong dataset. From this figure the 
specific samples which are usually grouped with microarrays in other reference groups can be identified: the AML-45 and ALL-61 samples in 
the group of the MLL samples, the ALL-03 sample (the most doubtful) in the AML and MLL groups, and the MLL-25, MLL-32, MLL-34 and 
MLL-62 samples in the ALL group. 
 

Table 4. Confusion matrix for the Armstrong dataset. 

  Predicted class 

  ALL AML MLL 

True  

class 

ALL 65.88% 5.16% 28.95% 

AML 4.42% 86.40% 9.18% 

MLL 34.74% 12.85% 52.41% 
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hierarchical clustering algorithm have a similar behaviour for 
the AML group (in the case of hierarchical algorithm is 
perfect) but it gets worse for the MLL group (decreasing 
considerably the number of samples in this cluster) and the 
ALL group (increasing the confusion with regard to the MLL 
group). 

3.3 Discussion  

The aim of the experiments reported in the previous 
section is to test the validity of the proposed clustering 
method. Dealing with unsupervised classification, it is very 
difficult to test the ability of a method to perform the 
clustering since there is no supervision of the process. In this 
sense, the classification into different groups proposed by the 
authors in [11-12] is assumed to be the reference partition of 
samples in our work. This assumption may be questionable in 
some cases, since the reference groups are not well 
established. For example, in the HC-Salamanca dataset the 
AML with-inversion group is established by observation of 
the karyotype of cancer cells, but there is no other evidence 
(biological, genetic) suggesting that this group corresponds to 

a distinct disease. 
Even so, the assumption of these prior partitions as 

reference groups is the only way to evaluate the similarity (or 
dissimilarity) of the results computed by the proposed 
method based on existing knowledge. As it turns out, there is 
no perfect match among the results of our proposed method 
and the reference partitions, but they are compatible with the 
current knowledge of each dataset. For example, for the HC-
Salamanca dataset the better characterized groups are the 
APL and Other-AML groups, the worst is the AML with 
inversion group, and there is some confusion of the 
monocytic AML with the AML with-inversion and Other-
AML groups. These results are compatible with the state-of-
the-art discussed in [11], where the APL group is the better 
characterized disease (it can be considered as a distinct class), 
the monocytic AML is a promising disease (in [11] the 
authors try to show differences in gene expression of this 
class with regard the others), the AML with inversion in 
chromosome 16 is the weaker class, and the Other-AML 
group acts as the dumping ground for the rest of samples 
which are not similar enough to the other possible classes. 
For the Armstrong dataset, the AML group is clearly 
separated from the MLL and ALL groups. It is not surprising 
since the myeloid leukemia (AML) and lymphoblastic 
leukaemias (MLL and ALL) represent distinct diseases. Some 
confusion is present among ALL and MLL groups, but this 
result is compatible with the assumption (which authors test 
in [12]) that the MLL group is a subtype of the ALL disease. 

Moreover, the results shown in Tables 1 and 4 (by rows) 
are an estimation of the overlapping area between the i-th 
membership graph (associated with the i-th predicted group) 
and any j-th membership graph (see Figures 7 and 8 for a 
geometrical interpretation) taking into consideration the 
samples in the i-th true cluster. Therefore, according to the 
affinity graphs shown in Figures 7 and 8, these percentages 
can be also interpreted as a measure of the 
similarity/dissimilarity among predicted groups. 

4. Conclusions  

The simulated annealing-based algorithm presented in this 
work is a new algorithm for iterative class discovery that uses 
fuzzy logic for informative gene selection. An intrinsic 
advantage of the proposed method is that, assuming the 
percentage of times in which a given microarray has been 
grouped with samples of other potential classes, the degree of 
membership of that microarray to each potential group can 
be deduced. This fact allows a fuzzy clustering of the available 
microarrays which is more suitable for the current state-of-
the-art in gene expression analysis, since it will be very 
unlikely to state (without uncertainty) that any available 
microarray only belongs to a unique potential cluster. In this 
case, the proposed method can help to assess the degree of 
affinity of each microarray with potential groups and to guide 
the analyst in the discovery of new diseases. 

In addition, the proposed method is also an unsupervised 
technique for gene selection when it is used in conjunction 

Table 5. Final clustering for the Armstrong dataset. 

ALL ALL-01, ALL-02, ALL-04, ALL-05, ALL-06, ALL-07, 
ALL-08, ALL-09, ALL-10, ALL-11, ALL-12, ALL-13, 
ALL-14, ALL-15, ALL-16, ALL-17, ALL-18, ALL-19, 
ALL-20, ALL-58, ALL-59, ALL-60, MLL-25, MLL-32, 

MLL-34, MLL-62 

AML ALL-03, AML-38, AML-39, AML-40, AML-41, AML-
42, AML-43, AML-44, AML-46, AML-47, AML-48, 
AML-49, AML-50, AML-51, AML-52, AML-53, AML-
54, AML-55, AML-56, AML-57, AML-65, AML-66, 
AML-67, AML-68, AML-69, AML-70, AML-71, AML-
72 

MLL ALL-61, AML-45, MLL-21, MLL-22, MLL-23, MLL-
24, MLL-26, MLL-27, MLL-28, MLL-29, MLL-30, 
MLL-31, MLL-33, MLL-35, MLL-36, MLL-37, MLL-63, 
MLL-64 

Table 6. Final clustering computed from the results of the 
hierarchical clustering algorithm for the Armstrong dataset. 

ALL ALL-01, ALL-02, ALL-03, ALL-04, ALL-05, ALL-06, 
ALL-07, ALL-08, ALL-09, ALL-10, ALL-11, ALL-12, 
ALL-13, ALL-14, ALL-15, ALL-16, ALL-17, ALL-18, 
ALL-19, ALL-20, ALL-58, ALL-59, ALL-60, ALL-61, 
MLL-21, MLL-22, MLL-23, MLL-24, MLL-25, MLL-26, 

MLL-27, MLL-28, MLL-29, MLL-31, MLL-33, MLL-34 

AML AML-38, AML-39, AML-40, AML-41, AML-42, AML-
43, AML-44, AML-45, AML-46, AML-47, AML-49, 
AML-50, AML-51, AML-52, AML-53, AML-54, AML-
55, AML-56, AML-57, AML-65, AML-66, AML-67, 
AML-68, AML-69, AML-70, AML-71, AML-72 

MLL AML-48, MLL-30, MLL-32, MLL-35, MLL-36, MLL-37, 
MLL-62, MLL-63, MLL-64 
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with the concept of discriminant fuzzy pattern (DFP) 
introduced in [13]. Since the selected genes depend on the 
resulting clustering (they are the genes in the computed DFP 
obtained from all groups) and the clustering is obtained by 
maximizing the cost function (which is based on the notion 
of genetic coherence and assessed by the number of genes in 
the fuzzy pattern of each cluster), then the selected genes 
jointly depend on all the genes in the microarray, and the 
proposed method can be also considered a multivariate 
method for gene selection. 

Finally, the proposed technique, in conjunction with our 
previous developed geneCBR platform, represents a more 
sophisticated tool which integrates three main tasks in 
expression analysis: clustering, gene selection and 
classification. In this context, all the proposed methods are 
non-parametric (they do not depend on assumptions about 
the underlying distribution of available data), unbiased with 
regard to the basic computational facility used to construct 
them (the notion of fuzzy pattern) and with the ability to 
manage imprecise (and hence, uncertain) information, which 
is implicit in available datasets in terms of degree of 
membership to linguistic labels (expressions levels, potential 
categories, etc.). 
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