Supplemental Figure 1. Fold Recognition Performance of Ada-BLAST with Different Settings Given Fold-specific Libraries. (a) Relative frequency of # of PSSMs generated from each TZ-SABmark queries. The average number of PSSMs generated from the queries is 3.6, with the most being 31 PSSMs which were generated from *d1tfra1*, a *SAM-domain like* fold. If a TZ-SABmark query was not in the version of PDB which we used to construct fold-specific libraries, PSSMs were not generated from the query. There are 60 such TZ-SABmark queries. (b) Comparison of ROC curves of Ada-BLAST at different coverage thresholds when e-value threshold is fixed at 10¹⁰. (c) Comparison of ROC curves of Ada-BLAST of e-value 0.01 & no coverage, e-value 0.01 & 80% coverage, e-value 10¹⁰ & no coverage, and e-value 10¹⁰ & 80% coverage.

Supplemental Figure 2. Characterization of alignments used by Ada-BLAST at e-value 0.01 and 10¹⁰ thresholds. Pairwise identity of the alignments collected by Ada-BLAST using rps-BLAST with e-value 0.01, no coverage and e-value 10¹⁰, 80% coverage. The analysis is done separately for the alignments between queries and the PSSMs of true fold-specific library and those between the queries and the PSSMs of false fold-specific library.

Supplemental Figure 3. Comparison of Ada-BLAST dendrograms of e-value 0.01 and 10^{10} thresholds. A portion of the e-value 0.01, no coverage dendrogram containing the queries mis-clustered (*top left box*) and a portion of the e-value 10^{10} , 80% coverage dendrogram containing the same queries. The queries in blue boxes (queries in red in the dendrogram of e-value 0.01, no coverage in Fig. 2b) were improperly clustered in the result of e-value 0.01, no coverage, but properly clustered in the result of e-value 10^{10} , 80% coverage.

Supplemental Figure 4-5. Hierarchical clustering of transmembrane containing proteins with additional Ada-BLAST settings. 74 sequences representing multiple classes of transmembrane containing proteins were hierarchically clustered and visualized by Cluster and Treeview [21]. The horizontal lines represent the correlation scores derived from the analysis. Alignments for the ILB DB PSSMs were derived from embedded alignments (Fig. S4) and e=0.01 (Fig. S5) threshold.

Supplemental Figure 6. rps-BLAST Analysis of 1F88. The primary amino acid sequence for 1F88 (gi|197107531) was screened by rps-BLAST at e-value=1. This figure shows the web-based output for domain identification.

Supplemental Figure 7. The Characterization of Structural Elements in 1F88. This graph shows the performance of Hidden Markov Models (TMHMM) vs embedded Ada-BLAST in determining the membrane spanning domains in Bovine Rhodopsin as determined by X-ray Crystallography (green= Beta pleated sheets, red=helices, loops not shown). This protein was analyzed with an expanded set of PSSMs representing a large variety of transmembrane domains (~30K PSSMs). It is resonable to consider that the amino-acids within transmembrane spanning helicies will be more conserved than the intervening loop residues. The support of this hypothesis is presented herein. The structural features are annotated with droplines. The transmembrane probability determined by TMHMM is shown in teal. The other graph depicts a curve-fitted positional score for embedded Ada-BLAST (see Figure 4 for raw and smoothed data). The positional score was quantified in the following manner. For each positive PSSM, the alignment boundaries are determined by the overlapping alignments obtained from These regions were extracted and realigned by the Smith-Waterman Ada-BLAST. algorithm with a BLOSUM62 substitution matrix. Using the alignments, each residue was scored with substitution scores of BLOSUM62 if the residue is identically or positively (non-identical but conserved) aligned. This process was repeated for all positive PSSMs and the results were summed for each amino acid in the protein. The positional results were normalized to zero by subtracting the average positional score across the protein length from each point, and each amino acid position was then subjected to smoothing (Fast Fourier-transform point=8) and discontinous baselining using Origin Lab 7.5[°] . Baseline correction was performed by baselining to every local minimum across the entire curve.

Supplemental Figure 8. Ada-BLAST comparison with TMHMM and rps-BLAST for TRPC3. The top graphic depicts the domain organization predicted by rps-BLAST. Below this is a graph containing TM probabilities predicted by hidden-markov model TMHMM (magenta, right y-axis) compared with postitional Ada-BLAST data from embedded alignments with >30K TM PSSMs.

Supplemental Figure 9. Ada-BLAST comparison with TMHMM and rps-BLAST for TRPV5. The top graphic depicts the domain organization predicted by rps-BLAST. Note that rps-BLAST does not show a domain for the known channel region. Below this is a graph containing TM probabilities predicted by hidden-markov model TMHMM (magenta, right y-axis) compared with postitional Ada-BLAST data from embedded alignments with >30K TM PSSMs.

0.51 0.71

0.92

Ada-BLAST (rps-BLAST alignments) ILB DB (38,155 PSSMs) 74 queries e-value threshold: 0.01 Score: avg. identity x max. coverage Hierarchical clustering Pearson's correlation

1F88

View concise result ? Conserved domains on [lcl/seqsig_9090fcc463d253ce23ada88e98fdc7e7] Local query sequence Graphical summary show options » 190 150 200 250 300 50 Query seq. Non-specific 7TM_GPCR_Srv Rhodopsin_N hits 7TM_GPCR_Srsx 2TM_GPCR_Srw 7TM_GPCR_Srx Srg Superfamilies Srg superfamily Rhodopsin_N sup 7TM_GPCR_Srsx superfamily 7tm_1 Multi-domains PHA03087 PHA02638 PHA02834 PHA03235 . ? ? Search for similar domain architectures Refine search

List of domain hits			2
Description	Pssmld	Multi-dom	E-value
HRhodopsin_N[pfam10413], Rhodopsin is the archetypal G-protein-coupled receptor. Such receptors participate in	150994	no	2.65e-16
+7TM_GPCR_Srv[pfam10323], Chemoreception is mediated in Caenorhabditis elegans by members of the seven	150919	no	7.96e-06
H7TM_GPCR_Srsx[pfam10320], Chemoreception is mediated in Caenorhabditis elegans by members of the seven	150916	no	6.83e-03
H7TM_GPCR_Srw[pfam10324], Chemoreception is mediated in Caenorhabditis elegans by members of the seven	150920	no	0.03
H7TM_GPCR_Srx[pfam10328], Chemoreception is mediated in Caenorhabditis elegans by members of the seven	150924	no	0.15
+Srg[pfam02118], Srg family chemoreceptor.	145331	no	0.89
H7tm_1[pfam00001], This family contains, amongst other G-protein-coupled receptors (GCPRs), members of the	143794	yes	8.55e-42
HPHA03087[PHA03087], G protein-coupled chemokine receptor-like protein; Provisional	165371	yes	2.10e-11
HPHA02638[PHA02638], CC chemokine receptor-like protein; Provisional	165021	yes	2.67e-09
+PHA02834[PHA02834], chemokine receptor-like protein; Provisional	165177	yes	3.02e-04
HPHA03235[PHA03235], DNA packaging protein UL33; Provisional	165494	yes	2.58e-03

View full result

?

rps-BLAST

Conserved domains on [gi|4507687|ref|NP 003296.1]

short transient receptor potential channel 3 isoform b [Homo sapiens]

HANK[cd00204], ankyrin repeats; ankyrin repeats mediate protein-protein interactions in very diverse	29261	yes	1.07e-1
+]TRP_2 super family[cl07091], This domain is found in the transient receptor ion channel (Trp) family of proteins	149414	no	3.93e-2
HPKD_channel super family[cl10691], This family contains the cation channel region of PKD1 and PKD2 proteins.	116626	no	7.63e-1
+PBC super family[cl04264], The PBC domain is a member of the TALE (three-amino-acid loop extension) superclass of	146435	no	1.6
HArsB_NhaD_permease super family[cl09110], Anion permease ArsB/NhaD. These permeases have been shown to translocate sodium,	175004	no	3.7
+Cytochrom_B562 super family[cl01546], This family contains the bacterial cytochrome b562. This forms a four-helix bundle that	174645	no	4.2
HNOB1_Zn_bind super family[cl10704], This domain corresponds to a zinc ribbon and is found on the RNA binding protein NOB1.	149739	no	7.2
HCOG5381 super family[cl02225], Uncharacterized protein conserved in bacteria [Function unknown]	34944	no	11
HNR_DBD_like super family[cl02596], DNA-binding domain of nuclear receptors is composed of two C4-type zinc fingers. Each	155002	no	22
+Peptidase_M14_like super family[cl11393], The M14 family of metallocarboxypeptidases (MCPs) are zinc-binding carboxypeptidases (175235	no	23
HBac_rhamnosid super family[cl01801], This family consists of bacterial rhamnosidase A and B enzymes. L-Rhamnose is abundant	174672	no	27
+TT_ORF2 super family[cl03800], TT virus (TTV), isolated initially from a Japanese patient with hepatitis of unknown	145881	no	29
+Peptidase_S48 super family[cl11616], Peptidase family S48.	159582	no	49
+trp[TIGR00870], after chronic exposure to capsaicin. (McCleskey and Gold, 1999).	162078	yes	0e+00

Supplemental Figure 13

Conserved domains on [gil17505200|ref|NP 062815.2]] rps-BLAST

?

transient receptor potential cation channel subfamily V member 5 [Homo sapiens]

List of domain hits			2
Description	Pssmid	Multi-dom	E-value
+]ANK[cd00204], ankyrin repeats; ankyrin repeats mediate protein-protein interactions in very diverse	29261	yes	1.27e-15
+]ANK[cd00204], ankyrin repeats; ankyrin repeats mediate protein-protein interactions in very diverse	29261	yes	1.54e-08
HBI-1-like super family[cl00473], BAX inhibitor (BI)-1 like protein family. Mammalian members of this family of small	174226	no	0.08
+]ATG11 super family[cl11043], This is a family of proteins involved in telomere maintenance. In Schizosaccharomyces	150965	no	3.2
+]CitX super family[cl01498],	174633	no	4.9
+GAT_1 super family[cl00020], Type 1 glutamine amidotransferase (GATase1)-like domain. This group contains proteins	173987	no	6.4
HYCG1 super family[cl09228], Chromosome condensation complex Condensin, subunit G [Chromatin structure and dynamics /	34815	no	7.5
HINCENP_ARK-bind super family[cl04337], This region of the inner centromere protein has been found to be necessary and	146526	no	12
HBAR super family[cl12013], BAR domains are dimerization, lipid binding and curvature sensing modules found in many	159673	no	14
(+)UDG super family[cl00483],	174234	no	28
HDUF3603 super family[cl13637], This protein is found in bacteria and eukaryotes. Proteins in this family are about 250	152662	no	34
HInnexin super family[cl03000], This family includes the drosophila proteins Ogre and shaking-B, and the C. elegans	174746	no	45
+]DIL super family[cl03379], The DIL domain has no known function.	145158	no	62
Htrp[TIGR00870], after chronic exposure to capsaicin. (McCleskey and Gold, 1999).	162078	yes	0e+00

