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ABSTRACT

Chronic occupational exposure to low levels of metal mixtures necessitates biomonitoring of exposed workers. However, a single biomarker is
rarely sufficient to ascertain the exposure of an individual to a complex mixture, with multiparameter analysis of the same sample considered
recently as a preferred approach. Porphyrins are formed as intermediates of heme biosynthesis and different metals can exert their effects at
different points of this metabolic pathway, leading to changed urinary porphyrins excretion profiles. The aim of this work was to develop a
model that could serve to identify, on an individual basis, multiple metal exposure resulting from mining work, by using urinary porphyrin
profiles. Urine samples of workers were obtained from a Portuguese mining company and a non-occupationally exposed group was used as
control. The levels of uro-, hepta-, hexa-, penta-, copro- and protoporphyrins were determined by HPLC. It was observed that only
heptaporphyrin levels in miners were significantly (p<0.05) different from controls. However, when the concentrations of all porphyrins were
combined by binary logistic regression, their ability to discriminate between miners and controls was higher than each one of the porphyrins
alone, as indicated by a greater curve area under a Receiver Operating Characteristics (ROC) curve. Moreover, when the combined porphyrins
were used to calculate the probability of each subject fit in the occupationally exposed group, 83% of 47 individuals were correctly identified
with respect to their type of exposure. These results suggest that the integration of the urinary porphyrin profile is a promising tool for the
detection of subjects exhibiting biochemical modifications due to occupational exposure to metals in mines.
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parameters, measured simultaneously in the same sample is

1. Introduction

Mining represents one of the most hazardous occupations
[1], and has been long recognized as arduous and liable to
injury and disease [2]. Biomonitoring of chronic
occupational exposure to low levels of metal mixtures in
miners as well as other occupations is indispensable for
workers’ health, with molecular biomarkers (BM)
representing critical tools in achieving this task [3, 4].
However a single BM is rarely sufficient to ascertain exposure
in a single person to a complex mixture. Accordingly,
information from multivariate analysis of multiple

being considered as a promising approach [5]. Porphyrin
analysis represents one such approach. Porphyrins are
compounds formed as intermediates of heme biosynthesis
[6], and it well established that various metals can exert their
effects at different points of the porphyrin metabolic
pathway, leading to changed urinary porphyrin excretion
profiles. Thus, porphyrins have been recognized as promising
BMs of metal mixture-induced toxicity [7]. Indeed, previous
work in our laboratory revealed that changes in rat urinary
porphyrin profiles could predict the magnitude of effects
induced by a metal mixture in individual animals [8, 9]. Our
recent work has focused on the translation of these
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observations to human populations exposed to metal
mixtures, such as mine workers [3]. The aim of this study
was to develop a model that could serve to identify multiple
metal exposures resulting from mining work taking
advantage of urinary porphyrin profile analysis on an
individual basis.

2. Material and Methods

Urine samples from workers in a mining company in
Portugal were obtained from the Occupational Health
Department under the supervision of a nurse and doctor;
The working group (n=29) was composed of male miners
aged between 24 and 56 years. All of them were working in
the mine for more than one year, A non-occupationally
metal exposed group composed of workers from the same
company (also male individuals aged between 22 and 60)
was used as a control group. Individuals in the control
group were not exposed to metals in their work environment
(n=20). All the biological samples were collected on the last
day of the week and stored at -80°C until the analysis.

Chromatographic porphyrin analysis was performed by
HPLC after sample preparation according to Woods et al,
2009 [8] to obtain porphyrin profiles by determining uro-,
hepta-, hexa-, penta-, copro- and protoporphyrins
concentrations.

Statistical analysis was performed with the SPSS 16.0
statistical package for Windows (SPSS, Inc., Chicago, IL,
USA). Data are expressed as means + standard deviations
(SD). 1) The occupational and non-occupational exposed
groups were compared by Mann-Whitney U tests,
respecting to their levels of each porphyrin. 2) The ability of
urinary porphyrins to detect occupational exposures in
mines was evaluated by ROC analysis, which is a statistical
tool that can be used to evaluate the diagnostic accuracy of
BMs, alone or in combination [10]. In this analysis, BMs
levels are plotted in a curve under a 1- Specificity (x) vs
Sensitivity (y) axis, being the area under the curve directly
proportional to the BM(s) diagnostic accuracy. Actually,
these plots of 1-Specifity (false positives or 1-true negatives)
versus Sensitivity (true positives) is an effective measure of
BM(s) accuracy [11]. Thus, an area=100% indicates that all
subjects are true positives and true negatives revealing a
maximum accuracy of the BM(s); by its turn an area that lies
close or under 50% have no information content and
indicate that the BM(s) do not have diagnostic utility
(Warnock and Peck, 2010)[12]. Here, the levels of each
porphyrin alone and the combination all the porphyrins by
binary logistic regression, were tested by ROC analysis; the
obtained areas were compared to evaluate which BM(s)
exhibited the highest diagnostic accuracy. 3) Posteriorly we
created a mathematical expression that could serve to
determine the odds of a new subject under study being
exposed to metals in his work environment [13]; The odd
values was calculated using levels of urinary porphyrins. This
expression was generated by binary logistic regression.

Notably, combining porphyrins profiles had a significantly
better diagnostic accuracy under the ROC curves for metal
exposure.

3. Results
3.1 Urinary porphyrin profiles

Figure 1 shows that a significant (p<0.05) difference and
lower urinary levels of heptaporphyrins were noted in
miners when compared to controls.
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Figure 1. Uroporphyrin (a), heptaporphyrin (b), hexaporphyrin (c),
pentaporphyrin (d), coproporphyrin (e) and protoporphyrin (f)
urinary levels in controls (C) and miner (M) population. Data rep-
resent the mean + SD and n=20 and 29 in C and M groups, respec-
tively. All groups were compared by Mann-Whitney U tests. * rep-
resents p < 0.05 versus C.
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3.2 Capability of urinary porphyrins to detect occupational
exposures in mines

The diagnostic accuracy of each porphyrin alone was
tested for their ability to detect subjects occupationally
exposed in mines (true positives). This approach was
deemed unsatisfactory as the areas under the 1- Specificity
(x) vs Sensitivity (y) axis were lower than 50%, attesting to
high false positives and false negatives, and indicating lack of
diagnostic utility of each of the BMs alone (Figure 2a).
Alternatively, when all the porphyrins were combined by
binary logistic regression, the number of true positives and
true negatives increased substantially as reflected by the
increase in the area under the ROC curve (area= 0.743;
p<0.05) (Figure 2b).

3.3 Detection of mining work related exposure in an
individual basis

To detect the mining work related exposure in each
subject, we developed a mathematical expression. The
expression below represents the odds of a subject to be
considered as exposed in a mine (oem), by depicting the
concentrations of their urinary porphyrins (uro-, hepta-,
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Figure 2. The ability of the urinary levels of uroporphyrins, hepta-
porphyrins, hexaporphyrins, pentaporphyrins, coproporphyrins
and protoporphyrins individually (a) and their combination by
binary logistic regression (b) to identify subjects with mining related
exposures. The curve's area under the 1- Specificity (x) vs Sensitivity
(y) axis are plotted by ROC analysis: areas are directly proportional
to the BMs discriminant capabilities. All represented areas reached
statistical significance (p<0.05). N=49.

hexa-, penta-, copro- and protoporphyrins), by binary
logistic regression:

0DDs (oem) = 26.6Uro — 176.3Hepta + 484.9Hexa
+111.3Penta + 5.9Copro + 790.2Proto + 1.4

The use of combined urinary porphyrin levels leads to 83%
of correct detections of occupational exposure in miners
(Figure 3b). More precisely, 15 of 20 subjects included in the
control group were correctly identified as non-occupational
exposed exhibiting only a 0.15 to 0.45 range odd of being a
miner (Figure 3b). Additionally, 4 of the 5 controls were
erroneously classified as miners showing a 0.80 to 0.85 range
odd of being a miner, while one person had an odd of only

0.5 (Figure 3a). With regard to the miners, 24 of the 29
workers were correctly identified as miners with odds that
ranged from 0.6 to 0.9 with a higher frequency at the odd of
0.8 (Figure 3a). Concerning to the false negatives, 5 miners
were incorrectly included in the control group and a 0.20 to
0.45 range odd of being a miner was attributed to these
persons (Figure 3a).

4, Discussion

Low chronic exposure to metals may result in insidious
poisoning that may manifest clinically at a very late stage.
Thus it is critical to monitor mine workers so that subclinical
toxicity can be identified at the onset of disease or even at
earlier stages [3, 14]. While molecular BMs represent key
tools in occupational medicine [15], urinary porphyrin
profiles may serve as BMs of exposure to toxic metals in
humans [16, 17]. Since various metals can exert their effects
at different points of the heme synthesis pathway, we
hypothesized that the urinary porphyrin profile might serve
as a “fingerprint” that would permit a satisfactory
identification of individuals exposed to metals due to their
occupation in mines.

Our results showed that each of the porphyrins alone
poorly detected occupational exposures to metals, even on a
group basis, with miners and controls exhibiting differences
that lacked statistical significance (p>0.05) (Figurel). Miners
are exposed to several metals [3], such as lead (Pb), arsenic
(As), manganese (Mn), mercury (Hg) and aluminum (Al),
which interfere at common, and also at different points, in
the heme synthesis sequential pathway [18, 19, 20, 21, 22].
These events may lead to distinct fingerprint in urinary
excretion of each of the porphyrins, explaining their poor
diagnostic performance when used alone. These results were
confirmed by the observation of areas <0.5 under a 1-
Specificity (x) vs Sensitivity (y) axis plotted by ROC analysis
(Figure 2a). Indeed, BMs with a curve that lies close or under
the diagonal reference line (area = 0.5) had no information
content, and therefore no diagnostic utility [12]. In contrast,

Figure 3. Predicted probability of each subject belong to the mining group (M) after application of Expression 1 to each studied individual.
Each symbol (C or M) represents 1 subject (a) and the ODDs cut value for miners group membership is > 0.5. The table (b) represents the
counts of subjects included in each group as predicted by the model vs the real group (observed). N=20 and 29 in C and M groups,
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when the urinary porphyrins profile was applied as a whole
with integration of all the porphyrins by binary logistic
regression, the area under a ROC curve increased the
diagnostic utility (area=0.743) (Figure 2b) [12]. Therefore,
the concentrations of all the porphyrins were used to
generate an equation to determine the odds of a new subject
under analysis to be occupationally exposed in a mine
(previously displayed expression). When this equation was
tested in the studied subjects, a correct detection of the
occupational exposure in the mines was obtained for 83% of
the cases (Figure 3b). We suggest that the called “erroneous
classification” is not directly related to the model, but rather
with the type of environmental exposure of all the
populations; the control as well as the mining populations
are not homogeneous in terms of work, housing location,
social habits and genetic susceptibility. Our results are
satisfactory for a preliminary study with N=49, obtaining
25% of false positives and 17% of false negatives. These
findings also lead us to proceed with additional future work,
expanding on the sample size, to further establish the proof-
of-concept of these analyses as predicitive tools of metal
mixture exposures.

5. Concluding Remarks

Overall, the integration of the urinary porphyrin profile
showed superiority in discriminating miners or subjects non
-occupationally exposed, than any of the porphyrin
concentrations alone. The proposed multiparameter
approach is promising for the detection of mining work
related to multiple metal exposures, and should be further
validated in future studies. Although our study was focused
on porphyrin profile and metals, we may add that metals as
well as metal mixtures may increase oxidative stress and
originate adverse effects including the neurotoxic ones [23].
In fact, Pb, Hg, Fe and Mn are typical examples of metal
transport and toxicity at barriers, like the blood brain
barrier, inducing neurotoxicity [24]. Moreover, toxic metals
can promote the disruption of essential metal homeostasis,
and minor alteration in quantity, form or place of these vital
elements may lead to essential metal imbalances, associated
with several diseases [25].

Our studies highlight the need for additional time course
analyses to better understand gene-omics relationships and
adverse outcome pathways. This is important if
transcriptomics, proteomics, metabolomics and other omics
approaches are to be wused together to investigate
neurotoxicity or as bio-monitoring tools for exposure.
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