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ABSTRACT

Currently, omics-fusion, which is the combined analysis of data by employing multiple omics analyses, has been available, and it can enable a
more fundamental understanding of the biological phenomena than a single omics. However, multi-layered combination of multiple omics
technologies involves generation of a large amount of data, which leads to increased complexity and makes comprehension of bio-information
more difficult. The objective of this study was to investigate the utility of incorporating multiple omics technologies in a multi-layered fashion.
Transcriptomic, proteomic, and metabolomic analyses were carried out using a mouse model of diet-induced obesity. The present study
reported the comprehensiveness of three omics analyses and the utility of using multiple omics analyses. Some uniform changes among
different omis were observed, but the majority of changes were specific to each omics approach. This data supports the fact that various
molecules progress through the central dogma at differing speeds. Since the time axis differs for each molecule, combining multiple omics
analyses makes it possible to investigate the reactions in organisms three-dimensionally. At first glance, it simply appears that combining a
number of very large data sets produces even more complexity but, if multi-layered omics data are treated with an awareness of their meaning,
benefits, and limitations, then the combination of multiple omics analyses can be extremely useful for research in molecular biology.
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Abbreviations: CE-TOF MS (Capillary electrophoresis time-of-flight mass spectrometry), FDR (False discovery rate), HF (High-fat diet),
TRAQ (Isobaric tags for relative and absolute quantitation), LC-TOF MS (Liquid chromatography time-of-flight mass spectrometry), ND
(Normal diet), PPARg (peroxisome proliferator-activated receptor gamma), RMA (Robust Multi-array Average).

1. Introduction research tasks, such as evaluating the functionality of drug or

food, clarifying its mechanisms of action, and predicting

The Genome Project revealed the genomic sequences a
variety of living organisms, including humans, and this
information has fueled research into the comprehensive
understanding of genomes. Appending the suffix ‘omics’ to
the subject of study gives rise to the specific research area,
such as genomics, transcriptomics, proteomics, and
metabolomics. Such omics studies can aid the understanding
of the influence of drug or food on homeostasis or the
metabolic system, their role in disease prevention, and the
relationship between the individual’s genotype and disease [1
-3]. As this type of omics approach is utilized in various

toxicity, it can be proposed that with the spread of omics
technologies, demand for such research will increase in the
fields of lifescience research. Currently, omics-fusion, which
is the combined analysis of data by employing multiple omics
analyses, has been available, and it can enable a more
fundamental understanding of the biological phenomena
than a single omics. Most recently, omics analysis tool
PGMiner has been published [4]. Furthermore, some
integrated omics studies have been reported, for example,
integration of protein, nRNA and miRNA [5], transcriptome
and metagenome [6], transcriptome and proteome [7-9].
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However, multi-layered combination of multiple omics
technologies involves generation of a large amount of data,
which leads to increased complexity and makes
comprehension of bio-information more difficult. The
objective of this study was to investigate the utility of
incorporating multiple omics technologies in a multi-layered
fashion. Our group has been doing various research about
the prevention of lifestyle diseases including diabetes and
metabolic disorder [10]. The utility of multiple omics
technologies may be a powerful tool for the research region
about the prevention of lifestyle diseases like obesity and
metabolic syndrome, in the field of nutriomics like this
study, when the lifestyle choices are properly correlated.
Therefore, transcriptomic, proteomic, and metabolomic
analyses were carried out using a mouse model of diet-
induced obesity, which is one of the most commonly utilized
models in obesity research. Additionally, a verification
experiment on multi-layered omics was performed by
comparison and investigation of these data.

2. Material and Method
2.1. Animal experiments

Male C57BL/6] mice purchased from Charles River
Laboratories Japan, Inc., at 7 weeks of age were divided into
two groups, the normal diet group (ND group) was fed
D12450B (10 kcal% fat, Research Diets) and the high-fat diet
group (HF group) was fed D12492 (60 kcal% fat, Research
Diets). They were housed individually at a controlled
temperature of 23+1°C under a 12-h light-12-h dark cycle.
After fed ad libitum for 9 weeks, on the last day of the
experiment, after a 16-h food deprivation and a 1.5-h re-
feeding, the mice were deeply anesthetized with an
intraperitoneal injection of sodium pentobarbital. The livers
were then excised and proceeded to each omics analysis. The
same samples were analyzed in transcriptomics, proteomics,
and metabolomics studies (n=3 for each group). All animal
experiments were carried out in accordance with the
guidelines of the Animal Usage Committee of the Faculty of
Agriculture of the University of Tokyo.

2.2. Transcriptomics using DNA microarray data

DNA microarray data used in the present study were
obtained in the previous experiment, which were carried out
with Affymetrix GeneChip Mouse Genome 430 2.0 array
(Affymetrix, Santa Clara, CA, USA), which has 45,000 probe
sets and can analyze the expression level of over 39,000
transcripts and variants from over 34,000 well characterized
mouse genes [10]. Briefly, total RNA was isolated from the
livers of these mice using TRIzol Reagent (Invitrogen Life
Technologies, Tokyo, Japan). RNA of each individual was
reverse-transcribed to the first-strand complementary DNA
using SuperScript II RT (Invitrogen Life Technologies,
Tokyo, Japan). Second-strand complementary DNA

synthesis was then carried out using a DNA polymerase.
Biotinylated complementary RNA was generated from the
complementary DNA using a BioArray HighYield RNA
transcript labeling kit (Enzo Life Sciences, Farmingdale, NY,
USA) according to the standard Affymetrix protocols. The
obtained intensity files were analyzed using the statistical
analysis software R. After normalization of the intensity files
was performed with robust multi-array average (RMA)
normalizing [11], and then a clustering analysis was done
with hclust (hierarchical clustering, average linkage). Rank
products was used for intergroup comparison [12]. The
expression change was taken as informative when the false
discovery rate (FDR) value was < 0.1. To obtain detailed
molecular information and infer significant signaling
pathways from global profiling results of DNA microarray
data, we uploaded differentially expressed gene probes
according to the above criteria to DAVID (The Database for
Annotation, Visualization and Integrated Discovery, https://
david.ncifcrf.gov/).

2.3. Proteomics

We performed the differential proteomic analysis of the
mouse livers using Isobaric tags for relative and absolute
quantitation (iTRAQ), the same methods as our previous
study [13]. iTRAQ are a non-gel-based technique used to
quantify proteins from different sources in a single
experiment. It uses isotope-coded covalent tags. Total
protein was extracted by using lysis buffer and separated by
centrifugation at 12,000 x g for 30 min at 4°C. Protein
concentrations were determined using the Bradford assay,
and pooled protein were proceed to iTRAQ experiment kit,
performed according to the manufacture’s protocol (AB
SCIEX). Desalted samples were vacuum evaporated, and
added 50 pl of 0.1% formic acid, and 2 pl of samples were
measured with LC/MS/MS (TripleTOFTM 5600 + System
with Eksigent nanoLC). ProteinPilot™ (AB SCIEX) was used
to identify proteins and calculate protein expression levels
by comparing in silico peptide data. The number of peptides
used to identify proteins were shown in Table 2.

2.4. Metabolomics

Frozen mice liver samples were transferred into 500 pL of
methanol containing 50 pM of external standard. After
homogenization by BMS-M10N21 (bms, Tokyo) at 1,500
rpm, 120 s five times, 500 pL of chloroform and 200 pL of
ultra-pure water were added to the homogenate and mixed
well and centrifuged at 2,300 g for 5 min at 4°C. The
resultant water phases were ultrafiltrated by the Millipore
Ultrafree-MC PLHCC HMT Centrifugal Filter Device, 5
kDa (Millipore, Billerica, MA). The filtrates were dried and
dissolved in 50 uL of ultra-pure water. We then subjected the
samples obtained to capillary electrophoresis time-of-flight
mass spectrometry (CE-TOFMS) analysis using the Agilent
CE-TOFMS system (Agilent Technologies, Santa Clara, CA)
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Table 1. GO enriched terms of differentially expressed genes

Increased p-value Decreased p-value
Steroid biosynthesis 7.10E-21 Phosphoprotein 1.80E-09
Sterol biosynthetic process 4.20E-20 Cell fraction 3.50E-07
Steroid metabolic process 5.40E-20 Insoluble fraction 3.90E-06
Sterol biosynthesis 3.50E-19 Cytoplasm 5.20E-06
Steroid biosynthetic process 1.50E-18 Membrane fraction 2.10E-05
Cholesterol biosynthetic process 2.20E-17 Endoplasmic reticulum 3.60E-05
Sterol metabolic process 1.70E-16 Ubl conjugation 9.00E-05
Cholesterol biosynthesis 4.30E-16 Stress response 1.00E-04
Cholesterol metabolic process 8.20E-14 PPAR signaling pathway 1.90E-04
Lipid synthesis 1.50E-13 Endoplasmic reticulum 2.20E-04
Lipid biosynthetic process 1.40E-12 Microsome 2.20E-04
Oxidoreductase 1.60E-12 Membrane 2.40E-04
Endoplasmic reticulum 2.60E-12 Golgi apparatus 2.60E-04
Steroid biosynthesis 4.50E-12 Vesicular fraction 3.00E-04
Oxidation reduction 5.30E-12 Lipoprotein 4.60E-04
Endoplasmic reticulum 1.40E-10 Acetylation 5.00E-04
Terpenoid backbone biosynthesis 4.00E-08 Steroid metabolic process 5.60E-04
Transferase activity, transferring alkyl or aryl 8.90E-08 Regulation of hydrolase activity 7.00E-04
(other than methyl) groups

Microsome 1.80E-07 Basolateral plasma membrane 7.10E-04
Cell fraction 2.00E-07 Cytosol 1.20E-03
Vesicular fraction 2.90E-07 Golgi apparatus 1.20E-03
Isoprenoid metabolic process 3.20E-07 Steroid dehydrogenase activity 1.50E-03
Isoprenoid biosynthetic process 7.70E-07 Nucleotide binding 2.00E-03
Insoluble fraction 9.20E-07 Small GTPase mediated signal transduction 2.10E-03
Membrane fraction 1.30E-06 Trophectodermal cell differentiation 2.50E-03
Binding site:Substrate 3.10E-06 Histone H3 2.60E-03
Peroxisome 5.90E-06 H3 2.70E-03
Microbody 5.90E-06 NADP 2.90E-03
Acetylation 1.40E-05 Leukocyte transendothelial migration 3.00E-03
Peroxisome 1.70E-05 Extrinsic to membrane 3.10E-03

*P-value is Fisher's exact test
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. Protein # of Fold p- . Protein #of Fold p-
Protein Name Protein Name
ID Peptides  Change  value ID Peptides ~ Change  value
. NADP-dependent malic
AL1A1 Retinal dehydrogenase 1 P24549 66 2.001 0.000 MAOX P06801 13 0.357 0.084
enzyme
CAH3 Carbonic anhydrase 3 P16015 71 1.969 0.000 FAS Fatty acid synthase P1909%6 75 0.475 0.000
Betaine--h teine S 91V9
BHMT1  mehOMOGySENes 35490 76 1907 0000 ACLY  ATP-citrate synthase Q 24 0517 0.000
-methyltransferase 1 2
Hemoglobin subunit beta . :
HBBI1 . P02088 79 1.879 0.018 KPYR Pyruvate kinase isozymes R/L P53657 30 0.581 0.001
Acetyl-CoA acetyltrans- Q8QZT Acyl-coenzyme A thioesterase
THIL . X 44 1.548 0.000 ACOT1 055137 4 0.589 0.014
ferase, mitochondrial 1 1
Fatty aldehyde dehydro- Peroxisomal bifunctional QIDB
AL3A2 P47740 17 1.538 0.003 ECHP 49 0.610 0.000
genase enzyme M2
60S acidic ribosomal X Q8KO1
RLA2 . P99027 35 1.524 0.022 OPLA 5-oxoprolinase 3 0.618 0.070
protein P2 0
Ornithi inotransfer-
OAT FIIINE aminOWansier- o758 27 1518 0.039 GSTP1  Glutathione S-transferase P1  P19157 69 0662 0024
ase, mitochondrial
60S ribosomal protein Glycerol-3-phosphate dehy-
RL7A P12970 5 1.506 0.066 GPDM . . Q64521 8 0.686 0.014
L7a drogenase, mitochondrial
PRDX6 Peroxiredoxin-6 008709 51 1.489 0.003 RS13 40S ribosomal protein S13 P62301 6 0.701 0.025
Non-specific lipid- . .
NLTP K P32020 70 1.475 0.001 APOA4 Apolipoprotein A-IV P06728 6 0.711 0.078
transfer protein
Dihydrolipoyllysine-residue
Protein disulfide- acetyltransferase component Q8BMF
PDIA1 . P09103 57 1.468 0.001 ODP2 9 0.717 0.098
isomerase of pyruvate dehydrogenase 4
complex, mitochondrial
60S ribosomal protein Cytochrome c1, heme pro- QIDO
RL23A P62751 9 1.448 0.035 CY1 . . . 17 0.741 0.070
L23a tein, mitochondrial M3
3-hydroxyacyl-CoA Propionyl-CoA carboxylase QIIM
HCD2 008756 17 1.403 0.078 PCCB X . : 14 0.747 0.092
dehydrogenase type-2 beta chain, mitochondrial N9
Bifunctional ATP-dependent
Glutathione S-transferase dihydroxyacetone kinase/ Q8VvC3
GSTA3 P30115 22 1.400 0.084 DHAK 35 0.805 0.062
A3 FAD 0
-AMP lyase (cyclizing)
. . . Q8QZY
APOA1  Apolipoprotein A-I Q00623 20 1.380 0.001 GLCTK Glycerate kinase ) 4 0.812 0.061
. Phenazine biosynthesis-like Q9CXN
GGLO L-gulonolactone oxidase P58710 7 1.378 0.003 PBLD2 i O X 16 0.818 0.098
domain-containing protein 2 7
Pterin-4-alpha- Fructose-bisphosphate al-
PHS . . P61458 13 1.373 0.067 ALDOB Q1Y97 77 0.821 0.035
carbinolamine dehydra- dolase B
Elongation factor 1-alpha .
EF1A1 ) P10126 39 1.369 0.015 ANXA6 Annexin A6 P14824 14 0.839 0.086
Estradiol 17 beta- 1,4-alpha-glucan-branching QID6Y
DHB5 P70694 31 1.367 0.051 GLGB 11 0.839 0.057
dehydrogenase 5 enzyme 9
Dihyd imidine dehydro- 8CHR
DHSO  Sorbitol dehydrogenase Q64442 45 1359 0.003 DPYD ihydropyrimidine dehydro- - Q 7 0843 0087
genase [NADP+] 6
Aspartate aminotransfer- Pyruvate carboxylase, mito-
AATM ) A P05202 45 1.356 0.000 PYC ) Q05920 73 0.870 0.041
ase, mitochondrial chondrial
2,4-di 1-CoA reduc- 9CQ6 Carb: 1-phosphat - 8C19
DECR ienoyl-CoA reduc- —Q9CQ6 | 1331 0029 CPSM Arbamoyl-phosphate sy Q 360 0872 0.004
tase, mitochondrial 2 thase [ammonia], mitochon- 6
Tetratri tid t 8VB
TTC3s | crratricopeptiderepeat  Q 18 1329 0.044
protein 36 w8
TALDO  Transaldolase Q93092 8 1.315 0.083
GLNA Glutamine synthetase P15105 30 1.313 0.011
FAAA Fumarylacetoacetase P35505 44 1.286 0.004
Ester hydrolase Cllorf54 ~ Q91V7
CK054 10 1.275 0.054
homolog 6
CALR Calreticulin P14211 28 1.273 0.046
Protein disulfide-
PDIA3 P27773 50 1.263 0.042

isomerase A3
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at 4°C. The alignment of detected peaks was performed
according to the m/z value and normalized migration time.
The relative area value of each peak was calculated and used
for the intergroup comparison. Samples that were obviously
characterizing outliers were eliminated from the analysis.
Metabolite extraction, MS analysis, and data analysis were
performed in Human Metabolome Technologies.

2.5. Integrated analysis of transcriptomics and metabolomics

We used the web-based tool Keggle (http://keggle.jp), a
novel tool for the visualization of omics-data created by the
author’s group [14]. Transcriptome and metabolome data
were mapped onto KEGG (Kyoto Encyclopedia of Genes
and Genomes, http://www.genome.jp/kegg/) pathways on
the web.

3. Results
3.1. Animal experiments

The final body weights were higher in the HF group
compared to the ND group. The C57BL/6] mouse used in
this study is regarded as relatively sensitive to high-fat diets
and suitable as a non-genetic obese animal model when fed a
high-fat diet. The body weight gain of the mice fed a high-fat
diet (60% energy) for 9 weeks was 17.2 g, whereas that of the
mice fed a normal diet was 4.59 g, suggesting that the mice
fed a high-fat diet in this study can be regarded as a valid
obesity model for research (Supplemental Figure S1).

3.2. Results of DNA microarray data

Among the total 817 differentially expressed gene probes,
480 gene probes showed increases, and 337 gene probes
showed decreases in HF group. These differentially
expressed genes were uploaded to DAVID functional
annotation tools and the enrichment analysis was performed
(Table 1). The top 10 of enriched terms of increased genes
were Steroid biosynthesis, Sterol biosynthetic process,
Steroid metabolic process, Sterol biosynthesis, Steroid
biosynthetic process, Cholesterol biosynthetic process, Sterol
metabolic process, Cholesterol biosynthesis, Cholesterol
metabolic process, Lipid synthesis, lipid biosynthetic
process.

3.3. Results of proteome analysis using iTRAQ method

The proteome of mouse liver were analyzed using iTRAQ
labeling and LC/MS/MS. Among identified 1043 proteins,
50, 23 proteins were significantly increased and decreased by
HF, respectively (p-value < 0.1). In these proteins which
showed changes, the most differentially expressed proteins
were shown in Table 2. Among the increased proteins,
ALDHI1A1, HSD17B10, APOA1l, AKR1C4, GOT2 and
ACSLI are related to the oxidation of fat. Furthermore, lipid

transport proteins, including SCP2, APOA1l, GOT2 and
ACSLL1, and oxidative stress proteins including PRDX2 and
PRDX6 were increased. In the decreased proteins, there were
APOA4, ACLY, FASN and DECRI1, which related to fatty
acid synthesis, PKLR and PCX, which related to glucose
metabolism, ME1 and ACLY, which related to TCA cycle.
These alterations mean that lipid oxidation, transport and
oxidative stress were increased and TCA cycle, fatty acid
synthesis and glucose metabolism were decreased in the liver
tissue of obese mouse.

3.4. Results of metabolome analysis

We performed a metabolome analysis to explore the
hepatic metabolic alterations underlying the effects of HF
diet. Among the peaks obtained from the CE- and LC-TOF
MS analysis, 385 peaks were identified according to the value
of m/z and MT from metabolite database. Of these
metabolites, 26 showed changes, 10 were increased and 16
were decreased (Table 3). N-acetylglutamate (N-AcGlu),
which is a positive regulator of the urea cycle, was decreased
by the high-fat diet. Similar changes were found in the
abundance of ornithine, citruline, argininosuccinate
(ArgSuccinate), and arginine, which are the intermediates of
the urea cycle, and the final product, urea. In diet-indused
obese animal, it is well known that the urea production is
decreased by the dysfunction of urea cycle related enzymes
[15].

Furthermore, the abundance of choline was decreased by
HF diet. Choline is known to be a nutrient, which prevent
the accumulation of hepatic triglyceride, and reported to be
decreased in hepatosteatosis mouse liver [16].

4, Discussion

It is widely accepted amongst molecular biologists that
analysis based on these omics analyses is extremely effective,
and rapid technological innovation such as high-throughput
DNA sequencing and high-precision electron impact mass
spectrometry as well as improvements in DNA microarray
chips have led to its frequent utilization in various fields.
Prior to the popularization of omics technology, research
was carried out by focusing on a target molecule from a
wider range of biomolecules, but the utilization of omics has
led to a significant increase in the number of molecules that
can be captured. Omics analysis is not a tool for arriving at
conclusions, but is rather an approach for unbiased
screening. Even though currently DNA microarray probably
would've been easier to analyze data through many analysis
tools, using RNA-seq technology would become less biased.
Furthermore, taking into account the complexity of the
interactions between food, pharmaceuticals, and the
organism, methods that provide a complete overview of the
influences on the biomolecules should lead to rapid research
progress. However, while the use of omics technology has
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Table 3. The list of increased or decreased metabolites by high-fat
diet

KEGG ID Compound name Fold p-value
change

No ID 1H-Imidazole-4-propionic acid ~ 3.693 0.006
C00167 UDP-glucuronic acid 2.565 0.018
C00149,C00497, .

C00711 Malic acid 2.048 0.029
C00122 Fumaric acid 2.014 0.037
C01879 5-Oxoproline 1.863 0.010
No ID Heptadecanoic acid 1.649 0.037
C00307 CDP-choline 1.503 0.032
C00262 Hypoxanthine 1.503 0.034
No ID Stearoyl ethanolamide 1.435 0.016
C01081 Thiamine phosphate 1.376 0.017
No ID 2-Hydroxyisobutyric acid 0.852 0.014
C00780 Serotonin 0.831 0.010
C00086 Urea 0.786 0.022
C00114 Choline 0.753 0.032
No ID Homoserinelactone 0.669 0.014
C03425 Methyl oleate 0.643 0.029
C00042 Succinic acid 0.641 0.049
C00601 Phenylacetaldehyde 0.632 0.036
C01026 N,N-Dimethylglycine 0.569 0.029
C05568 Imidazolelactic acid 0.465 0.007
C03406 Argininosuccinic acid 0.440 0.007
C02835 Imidazole-4-acetic acid 0.424 0.042
No ID AC(22:0) 0.412 0.008
C02592 Taurolithocholic acid 0.321 0.030
C00489 Glutaric acid 0.273 0.015
C01921 Glycocholic acid 0.241 0.035

spread to molecular biology and numerous studies utilizing
omics technology have been conducted, this technology was
not employed effectively in a large number of studies.
Therefore, it is important to have a clear understanding of
the problems that omics can solve.

Fundamentally, when the research objective or task (the
‘why’) is clear, the four aspects of ‘where’, ‘when’, ‘what’, and
‘how’ on which the analysis will be carried out are of
importance. For example, in an experiment conducted in
this study, these aspects are—what will be fed and on which
organ or cell the changes will be observed (where), when will
the analysis take place in the experiment schedule (when),
which molecule is observed in the selected cell or time
(what), and how the data will be analyzed (how). If, the
research design is broken down into these four aspects, the
factor that omics can solve is the ‘what’ factor, i.e., a large
number of biomolecules can be captured at once. In
molecular biology research, omics technology does not solve
the ‘where’ or ‘when’, overwhelmingly solves the ‘what’, and
makes solving the how’ more difficult. Employing multiple
omics in a multi-layered fashion will broaden the field of
observation for the ‘what’ and make the ‘how’ more difficult

due to increased complexity. Because a large amount of data
on biomolecules can be gathered, knowledge about
bioinformatics becomes necessary and a situation arises
where the acquired data is so vast that it becomes difficult to
analyze. The discernment of false-negatives and false-
positives also becomes a problem. Even though a variety of
tools for performing omics analysis have become prevalent,
and tools such as the Ingenuity pathway analysis (IPA,
http://www.ingenuity.com),  KeyPathwayMiner  (http://
tomcat.compbio.sdu.dk/keypathwayminer/) [17, 18] and
DAVID are used in most research labs, the problem of how’
still remains a challenge for the future. Despite the presence
of these kinds of benefits and challenges, when the
complexity of the central dogma is taken into consideration,
it can be proposed that there would be large benefits from
employing omics in a multi-layered fashion at multiple levels
such as mRNA, protein, and metabolite.

In this experiment, omics analysis was performed at three
levels—gene expression, protein expression, and metabolite
formation. When considering the comprehensiveness of
these omics approaches, it is first necessary to consider that
the number and characteristics of the molecules, which are
the targets of these omics, are all different. Figure 1
represents the molecule count for the subject of analysis and
the number of molecules that were detectable in this
experiment for the three stages (molecule count is presented
as logarithm). The number of genes in the mouse used in
this animal experiment is said to be approximately 30,000
[19], with over 20,000 being detectable using DNA
microarray. DNA micro array is said to have a higher
comprehensiveness than other omics, but the reason for this
is that the molecules of interest all have the same properties.
Additionally, it is said that there are between 500,000 to 1
million types of proteins, with approximately 1,000 being
able to be detected by proteomics in this experiment (Figure
1)—the lowest comprehensiveness as compared to

Number of molecules

Differently expressed
B molecules

Transcriptomics B Detected molecules

B Speculated total
molecules in body

Approximately
20000-30000

Proteomics

Approximately
500000-1000000

Metabolomics

Approximately
7000

0 1

2 3 4 5 6 T
Logarithm of the number of molecules (log10)

Figure 1. The comprehensiveness of each omics technique.
Molecule count for the subject of analysis and the number of
molecules that were detectable in this experiment for the three
stages are represented (molecule count is presented as logarithm).
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Figure 2. A correlation plot of the change in scaling factors of the transcriptomics and proteomics data.
(A)The plot of the whole data, (B) Extracting and plotting the significant changes in the transcriptomics and proteomics data.

transcriptomics. The reason for this is that physical
properties of each protein differ, and from a technical point
of view, a method with high comprehensiveness has not yet
been established. Furthermore, according to a study by
Wishart et al. (2007) [20], approximately 7,000 molecules
(approximately 2500 metabolites, 1200 pharmaceuticals, and
3500 food based elements) existed as target metabolite
molecules in metabolomics. As the physical properties of
metabolites differ by each molecule, there is no one
technique, which can comprehend everything at the same
time. In this experiment, metabolomics was carried out
through the combination of CE-TOF/MS and LC-TOF/MS,
resulting in the successful detection of 385 metabolites
(Figure 1). Comparing the comprehensiveness of the three
omics analyses, we noted that proteomics has the lowest
comprehensiveness. However, there are striking innovations
in current proteome analysis technology including the
iTRAQ method employed in this study, which is a shotgun
method in proteomics that uses stable radioactive isotopes.
Currently, differences in comprehensiveness do exist but
they will be resolved over time as technology improves.
When conducting research involving multiple omics, it is
necessary to be aware that the molecule counts will differ
and for technological reason, large differences in
comprehensiveness will exist between various omics
analyses. Specifically, attention should be given to the
method of applying multiple omics data. It is essential to
understand that there is a reason for the common change
that exists in the multiple omics data and to approach the
issue from this point. As noted above, the reason for this is
that there are large differences in the comprehensiveness
between omics; to have a common difference means to be
tied to the weakness of the statistical power of the omics
approach with the lowest comprehensiveness. The next

section discusses the presence of uniform changes for
different omics approaches at different stages when dealing
with multiple omics data.

This study compared the transcriptomics and proteomics
data in order to consider the uniformity between results of
different omics. First, a correlation plot of the change in
scaling factors of the transcriptomics and proteomics data
was created (Figure 2). The plot of the whole data does not
show any particular correlation (Figure 2-A). Extracting and
plotting the significant changes in the transcriptomics and
proteomics data reveals a high level of correlation (Figure 2-
B). Molecules exhibiting changes in the same direction
(increase/decrease in expression) were extracted from the
data and those exhibiting common changes for both
transcriptomics and proteomics, were listed in Supplemental
Table S1. There were eleven molecules where a common
change was noted in the mRNA and protein levels, summing
up to 15.1% of the number of changes in protein count
observed through proteomics.

As is the case for the molecules in Supplemental Table S1,
a number of things can be said about the fact that a common
change can be observed among multiple stages. Because they
possess a quality, which makes it possible to observe the
same change at multiple stages at the exact moment the
analysis occurs, it can be said that there is no need to
conduct analyses at multiple stages for molecules with the
same observed change. However, in fact, the same change
can be observed which will increase the reliability of the
data. The fact that the changes in the mRNA level can also be
observed in the protein level (which catalyzes the actual
response in the organism) makes it easier to understand the
meaning of the mRNA change. Further, the change in
mRNA also provides support as to why the change in
protein level occurs. Obtaining a single change from
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Figure 3. The metabolic and transcriptomic change in the urea cycle.
The metabolic and transcriptomic change in the urea cycle were represented by mapping simultaneously on a KEGG metabolism map using
Keggle analysis tool. Decreased expression of transcripts or metabolites showed green color.

multiple stages enables observation from a three-
dimensional perspective. One needs to be aware of the above
point regarding the comprehensiveness when considering
uniformity. While it is true that uniformity in multiple
omics data leads to higher reliability, this will not mean that
high reliability of data will lead to uniform results. The
molecules given in Supplemental Table S1 were not
extracted because of the high reliability of their changes; they
also were not extracted because they were the most
meaningful out of all those present in the reactions in the
organism. In fact, the molecules were extracted because they
constituted an overlapping portion of the low
comprehensiveness of the proteomics with the
comprehensiveness of the transcriptomics. Certainly, it is a
type of important information, but it is not useful in terms
of sensitivity of screening. Evidence exists that carrying out
multiple omics analyses enables observation. For example, in
this study, performing metabolomics made it possible to
capture the metabolite change in the urea cycle. Figure 3
represents the metabolic and transcriptomic change in the
urea cycle, mapped simultaneously on a KEGG metabolism
map. There was no up-regulation in the urea cycle pathway.
It was not possible to focus only on the urea cycle
throughout the results of transcriptomics and proteomics,
but being able to observe the metabolite change enabled the
detection of a new change. The fact that there are aspects
that can only be observed when multiple omics approaches
are applied can be viewed as a disadvantage of using a single
omics technique. However, in this context, multi-layered
omics data should be interpreted with an understanding of
its meaning, benefits, and limitations.

In contrast to the above results, the results for multi-
layered omics approaches are not uniform. This section
discusses the meaning of a non-uniform change. The

transcriptomics and proteomics data given above reveal that
they are almost non-uniform. While high correlation was
observed between changes that were statistically significant,
in almost all of the cases, one was not significantly different.
The protein levels observed to be changed in the proteomics
data were 15.1%, which were also observed to be changed in
the transcriptomics data. From a reverse perspective,
approximately 85% changes are specific to proteomics and
are non-uniform between the two sets of omics data. In this
case, when different results are derived from multiple omics,
the differences in detection sensitivity—post-translation
modification, oxidization of the protein, the stability of the
protein, or metabolite—are the focus of debate and it is
definitely true that such causes also play a large part.
However, the essential meaning can be understood as the
deviation in the time axis of the central dogma for each of
the molecules. For example, in the case of molecule A and
molecule B reacting to some kind of stimulus, the speed of
the response to the stimulus and the speed of the
transcription will differ. In the case of an immediate early
gene, which rapidly responds to stimulus, the amount of
mRNA will peak at an early stage after receiving the
stimulus. However, a two-dimensional gene, which is
transcriptionally controlled by some kind of transcriptional
product, will slow down. In a study published in Nature,
analysis of the speed of translation to protein was carried out
on individual genes; the results showed that the speed of
translation differed for each molecule [21]. Accordingly, for
multiple omics data analyzed at the same time point it is
impossible for all molecules to exhibit the same change. This
is the paradox of multi-layered omics. Even though we tried
to capture multiple stages of the biomolecule
comprehensively, the fact that each molecule has a different
speed means that it is impossible to comprehensively capture
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the central dogma of the biomolecule.

However, this paradoxical aspect of multi-layered omics
may actually be its largest benefit. If all molecules exhibited
the same change, then there would be no need to use
multiple omics. Precisely, because various molecules
progress through the central dogma at differing speeds, it is
extremely unlikely that the changes in all molecules would
be uniform under multiple omics approaches and that the
changes should not be uniform. This is why there is a
necessity to use multiple omics analyses. The fundamental
importance of using multiple omics approaches is not
because it is possible to observe differing stages, it is because
the time axis differs for each molecule that it is possible to
capture the meaning of an organism which cannot be
grasped using a single omics analysis.

5. Concluding Remarks

The present study reported the comprehensiveness of
three omics analyses (transcriptomics, proteomics, and
metabolomics) and the utility of using multiple omics
analyses. Because comprehensiveness differs widely across
these omics approaches, it is necessary to be aware of this
when using multiple omics approaches. Furthermore,
uniform changes were observed among changes at all stages
but the majority of these specific to the omics approach. This
data supports the fact that various molecules progress
through the central dogma at differing speeds. Because the
time axis differs for each molecule, combining multiple
omics analyses makes it possible, for the first time, to
investigate the reactions in organisms three-dimensionally.
At first glance, it simply appears that combining a number of
very large data sets produces even more complexity but, as
discussed in this paper, if multi-layered omics data are
treated with an awareness of their meaning, benefits, and
limitations, then the combination of multiple omics analyses
can be extremely useful for research in molecular biology.
We hope that the knowledge shared in this paper can be of
value in future research utilizing multiple omics analyses.

6. Supplementary material

Supplemental Figure S1. The food intake and the body
weight of each group. (A) total food intake, (B) body weight.

Supplemental Table S1. The list of molecules that
showed common changes between transcriptomics and
proteomics.
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