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1. Introduction 

In the last years, high-throughput proteomic data analysis 
using matrix assisted laser desorption ionization coupled to 
time of +ight analyzers based mass spectrometry (MALDI-
TOF MS) has been an active research area due to its high 
speed, sensitivity and robustness for detecting proteins and 
peptides. Within this technique, large sets of samples are 
analyzed quickly in one single batch. In this context, 
bioinformatics methods and computational tools play a key 
role in MALDI-TOF MS data analysis, since they can handle 
the vast amount of raw data generated, supporting the 
application of complex analysis with the goal of 9nally 
extracting new knowledge and useful conclusions [1]. 

A common MALDI-TOF MS data analysis work+ow is 

characterized by three main stages: (i) data acquisition, (ii) 
preprocessing, and (iii) analysis. <is standardized work+ow 
starts with the acquisition and management of raw data that 
must be preprocessed to obtain clean peak lists, suitable for 
being used as input of the analysis stage [2]. Despite its 
apparent simplicity, each of these three main stages is 
composed by smaller steps, and di=erent solutions and 
approaches have been proposed to address them in the last 
years [3]. Regarding the analysis stage, the most popular use 
of MALDI-TOF MS is to identify proteins through their 
peptides, a process known as peptide-mass �ngerprinting 
(PMF). For this application scenario, the mass spectrum must 
be preprocessed for obtaining a list of peptide experimental 
masses, which can be searched against a database to identify 
target proteins. Nevertheless, analyses that make use of 
arti9cial intelligence (AI), machine learning (ML), and 
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statistical methods can also be executed in order to perform 
biomarker discovery, automatic diagnosis and knowledge 
discovery [1,4,5], taking peak lists as input. AI and ML 
methods have demonstrated their usefulness when applied 
to many di=erent biomedical, biological and omics 
problems. 

It is also important to note that when working with 
MALDI-TOF MS data, low quality spectra may be 
occasionally generated. For example, spectra showing a low 
number of m/z values in comparison with other spectra, or 
containing many unique m/z values not present in their 
sibling replicates. <ese noisy spectra may easily lead to 
many di=erent types of errors or most severe incorrect 
conclusions. To prevent such a scenario, a quality control 
(QC) step, which may be performed between the 
preprocessing and the analysis tasks, should be considered. 

Based on our previous experience in the 9eld [6–8], the 
present work reviews the most important aspects for 
correctly implementing such machine learning-based 
work+ows for the analysis of MALDI-TOF MS data. <e 
core work+ow analyzed, shown in Figure 1, is also 
implemented by Mass-Up [9], an open-source soQware 
platform freely available to the scienti9c community. 

2. Preprocessing 

Preprocessing of MALDI-TOF MS data is a decisive stage 
that transforms raw data into a suitable input for further 

analysis. In this context, inadequate or incorrect 
preprocessing methods can result in a biased dataset, 
hindering the process of reaching meaningful biological 
conclusions [10]. In such a situation, preprocessing becomes 
critical since raw data contains signals coming from the real 
peptides/proteins, as well as signals derived from several 
forms of noise (e.g. chemical, electronic factors, etc.). <e 
speci9c goals of this phase are (i) to remove noisy peaks 
without discarding any of the true peaks and (ii) to 
determine both m/z and intensity values with the best 
accuracy [11]. Since there is no standard MS data 
preprocessing pipeline, some authors proposed di=erent 
guidelines to establish a design/data analysis protocol 
[12,13]. AQer reviewing these guidelines, we proposed the 
following core preprocessing steps: (i) baseline correction, 
(ii) smoothing, (iii) peak detection and (iv) peak alignment. 
While the 9rst two steps aims to remove noise, peak 
detection is a feature extraction process able to select true 
(i.e. peptide/protein-related) peaks from a given spectrum. 
Finally, peak alignment (also referred as peak matching) 
consists on determining which peaks correspond to the same 
peptide/protein in di=erent samples. As a result of this 
phase, all the aligned peaks have the same mass values in all 
spectra and therefore, they are comparable and suitable for 
further machine learning analyses. 

Additionally, our proposed work+ow also incorporates a 
complementary 9ltering step that is closely related with the 
matching process. <is step allows the creation of a 

Figure 1.  Machine learning-based work+ow for the analysis of MALDI-TOF MS data. 
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consensus spectrum for a sample, which summarizes its 
replicates in one single spectrum. In our approach, the 
Percentage of Presence (POP) parameter allows the user to 
set the number of replicates where an m/z value must be 
present in order to be considered a valid consensus m/z 
value. 

3. Machine learning-based analyses 

Each preprocessed spectrum (or peak list) contains a 9nite 
number of peaks. A biomarker analysis can be done by using 
some adapted statistical methods that led to identify which 
of those peaks are associated with factors of interest [14]. 

Automatic diagnosis given a set of previously classi9ed 
samples, is a supervised ML problem [15]. For example, 
given an unlabeled serum sample from an individual, which 
can come from one or more replicates (i.e. spectra), the 
purpose of classi9cation could be to assign it to a speci9c 
diagnostic group (e.g. healthy or diseased). In this case, a 
classi9cation model is built from a set of labeled samples 
using the intensity or the presence/absence of the di=erent 
peaks (m/z) as input features [1]. It is important to note that 
when intensity values are used, the dataset must be 
normalized in order to make intensities comparable. Data 
used to build this model is called training data. <e model is 
then used to predict the class of those unlabeled samples.  

Common types of ML supervised techniques are, among 
others: (i) Bayesian classi�ers, such as Naïve Bayes, which are 
based on Bayes theorem; (ii) rule-based learners, which are 
based on the creation of human-readable rules that could 
explain why certain samples belong to a class; (iii) decision 
trees, which are based on tree-like structures that organize 
the knowledge to discriminate between samples and predict 
their class; (iv) random forests, which use several decision 
trees to predict the class of each sample; (v) support vector 
machines (SVMs), such as Sequential Minimal Optimization 
(SMO), which are based in the concept of linear separability 
between classes; and (vi) arti�cial neural networks (ANNs), 
which simulate brain’s operation in order to build the model 
and predict the class of each sample [1]. In algorithms such 
as rule-based learners or decision trees, it is also possible to 
consider some speci9c peaks as biomarkers used to separate 
the target classes. Despite the fact that these algorithms take 
peak lists as input, they can still contain noisy, irrelevant or 
redundant peaks, which can reduce the accuracy of the 
underlying classi9ers. To mitigate these symptoms, feature 
selection can be applied prior to the use of classi9cation 
algorithms, generating a cleaner dataset on which apply 
them. Feature selection methods can also be used to discover 
potential biomarkers. 

In contrast with supervised machine learning, in 
unsupervised classi9cation (or clustering), samples do not 
have associated class labels and they consist in grouping 
together samples with similar peak pro9les. <e main 
clustering approaches are: (i) partition clustering (e.g. K-
means algorithm), (ii) hierarchical clustering, and (iii) 

mixture models [15]. <ese techniques are characterized by 
the fact that they perform a one-dimensional clustering 
using samples’ attributes. A speci9c sub-type of clustering, 
called biclustering (or co-clustering), is able to perform a two 
dimensional clustering, that is, clusters are modeled with 
both samples and samples’ attributes. <ese unsupervised 
techniques lead to the creation of new hypotheses (e.g. 
proposed groups) that must be further explored and 
evaluated. 

4. Results 

<e straightforward work+ow proposed in this work is 
implemented by Mass-Up [9], our all-in-one open soQware 
development for MALDI-TOF MS knowledge discovery 
fully covering the whole data analysis work+ow. Mass-Up is 
an AIBench-based application [16] that allows researchers to 
easily manage and visualize raw data or peak lists, preprocess 
data, and execute di=erent types of analyses such as (i) 
biomarker discovery, (ii) clustering, (iii) biclustering, (iv) 
three-dimensional PCA visualization and (v) classi9cation of 
large sets of spectra data. <is section brie+y outlines the 
most relevant aspects of each analysis stage, from 
preprocessing to advanced machine learning-based analysis. 

As commented before, preprocessing of raw data is a 
critical stage needed to generate a suitable input for further 
analysis in form of clean peak lists. Since inadequate or 
incorrect preprocessing methods can hinder the 
achievement of meaningful biological conclusions [8], Mass-
Up includes state-of-the-art algorithms supporting the main 
preprocessing steps: (i) baseline correction, (ii) smoothing, 
(iii) peak detection and (iv) peak alignment. Mass-Up 
provides Top Hat, SNIP, Convex Hull, and Median 
algorithms for baseline correction from the MALDIquant 
package [17]. Regarding smoothing, the moving average 
window and Savitzky-Golay methods, both from the 
MALDIquant library, are o=ered. Additionally, Mass-Up 
supports two m/z selection alternatives: the CWT-based 
method implemented in MassSpecWavelet and a SNR-based 
method provided by MALDIquant. Concerning peak 
matching algorithms, Mass-Up includes a sequential 
procedure based on a sliding window (Forward, an in-house 
development) and a clustering based approach from 
MALDIquant. 

When analyzing MALDI-TOF MS data, low quality 
spectra can be occasionally obtained (e.g. spectra showing a 
signi9cant lower or higher number of m/z values in 
comparison with other spectra). <ese kind of spectra could 
lead to the achievement of incorrect conclusions or even 
hinder them. In order to prevent this possibility, a quality 
control (QC) step was included between the preprocessing 
and the analysis tasks. <is QC procedure has two targets: 
replicates, a low-level analysis on the replicates of each 
sample; and samples, a high-level analysis with extra 
information about the intra-sample m/z matching process. 

An important aim of MALDI-TOF MS analyses is 



Hugo López-Fernández et al., 2016 | Journal of Integrated Omics 

23-27: 26 

biomarker discovery, that is, the identi9cation of peptides or 
proteins of a sample able to di=erentiate speci9c conditions 
such as diseases or infections [18]. Following the 
recommendations given by McDonald [19], Mass-Up 
includes four di=erent tests of independence (i.e. Fisher’s 
exact test, Yates’ chi-square test, Randomization test, Chi-
square test) that allow users to identify those peaks that can 
be potential biomarkers to di=erentiate the conditions. <e 
test applied in each analysis depends on both the number of 
samples and the number of peaks present in the dataset. 

PCA is a mathematical procedure that can be applied to 
reduce the dimensionality of a set of samples containing 
eventually correlated variables (i.e. m/z values), by creating a 
set of values of linearly uncorrelated variables called 
principal components (PC). <ese PC can be used to 
represent the samples in a 3-dimensional space. By simply 
assigning di=erent colors to samples’ conditions, users can 
visually identify if there is a separation between conditions 
and, therefore, they are distinguishable. 

Cluster analysis allows 9nding groups of samples with 
similar spectral pro9les in the dataset. As an unsupervised 
technique, it allows discovering hidden or previously 
unknown subgroups of unlabeled samples. When applied to 
labeled data, it allows researchers to check if the di=erent 
conditions previously identi9ed in the dataset are separable 
by means of this technique (see Figure 2). Mass-Up includes 
an in-house development of an agglomerative, bottom-up 
hierarchical clustering algorithm. 

In previous studies we have proposed a novel work+ow for 
the application of biclustering to MALDI data [20], a 
simultaneous clustering on both rows and columns. Mass-
Up supports this work+ow allowing researchers to apply 
di=erent biclustering algorithms such as Bimax and BiBit 
and inspect results in an intuitive biclustering viewer. 

Finally, sample classi9cation is the ability to predict the 
label of a sample given a training set of labeled samples, 
therefore, the capacity of producing a diagnosis machine 
[21]. Mass-Up provides an interface adapted from the Weka 
soQware allowing users to con9gure a speci9c classi9er and 
evaluate its performance using di=erent validation schemes. 
<rough this operation, users can determine which classi9er 
performs best for the dataset under study. As a result, users 
can: (i) analyze the performance of the classi9er using 
di=erent statistical measurements (e.g. accuracy, kappa, 
precision, recall, etc.) and (ii) make ROC analyses per 
condition. 

Mass-Up is freely available at http://sing.ei.uvigo.es/mass-
up/, where users can 9nd installers for Windows and Linux/
MacOS systems along with detailed tutorials, manuals and 
sample datasets. 

5. Concluding Remarks 

In this work, we have explored machine learning-based 
work+ows for the analysis of MALDI-TOF mass 
spectrometry data. <e proposed approach enhances typical 

Figure 2. Mass-Up application showing a clustering analysis. <e example dataset (available at http://sing.ei.uvigo.es/mass-up/downloads/
datasets/Cancer-Dataset.zip) is composed of sera from 5 patients with lymphoma, sera from 5 patients with myeloma, and sera from 2 
healthy donors. As the dendrogram illustrates, the three conditions are correctly separated since all the samples of each condition are 
grouped together. 
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MALDI-TOF MS data analysis work+ows by adding a 
quality control step aQer preprocessing and, by supporting 
the application of di=erent ML approaches. 

With Mass-Up, a multiplatform open-source tool 
implementing such work+ow is provided to the scienti9c 
community. Its usefulness is demonstrated by the increasing 
number of studies that use our solution [22–24] and by the 
fact that it has been included in public mass spectrometry 
soQware repositories and projects, such as MASSyPup(64), 
the Mass Spectrometry Live Linux, a Puppy Linux based Live 
distribution that groups several tools focused on the analysis 
of MS data. A strength of Mass-Up is that it comes within a 
friendly graphical user interface designed to allow 
proteomics researchers analyze MALDI-TOF MS data 
without the need to be bioinformatics experts. 
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